Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Luís Manuel Pessoa

2021

iBROW

Autores
Tavares, JS; Watson, S; Zhang, W; Figueiredo, JML; Cantu, HI; Wang, J; Al-Khalidi, A; Kelly, AE; Wasige, E; Salgado, HM; Pessoa, LM;

Publicação
Springer Series in Optical Sciences - THz Communications

Abstract

2022

A Gaussian Window for Interference Mitigation in Ka-band Digital Beamforming Systems

Autores
Tavares, JS; Avelar, HH; Salgado, HM; Pessoa, LM;

Publicação
2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing, CSNDSP 2022

Abstract
This paper proposes the use of a Gaussian window on the array factor as an interference mitigation method, aiming to avoid the computational complexity of the MVDR algorithm at the cost of a slight performance reduction. We show that by optimizing the parameters of the Gaussian window, it is possible to effectively mitigate the interfering signal if it is received within a certain angular range from the desired signal, while being still effective beyond that range. Finally, we show that the effectiveness of this approach is maintained across the full frequency reception range of the Ka-band, and confirm its validity using 8 × 8 and 16 × 16 array sizes. © 2022 IEEE.

2022

Design and Experimental Evaluation of a Bluetooth 5.1 Antenna Array for Angle-of-Arrival Estimation

Autores
Paulino, N; Pessoa, LM; Branquinho, A; Gonçalves, E;

Publicação
13th International Symposium on Communication Systems, Networks and Digital Signal Processing, CSNDSP 2022, Porto, Portugal, July 20-22, 2022

Abstract
One the of the applications in the realm of the Internet-of-Things (IoT) is real-time localization of assets in specific application environments where satellite based global positioning is unviable. Numerous approaches for localization relying on wireless sensor mesh systems have been evaluated, but the recent Bluetooth Low Energy (BLE) 5.1 direction finding features based on Angle-of-Arrival (AoA) promise a low-cost solution for this application. In this paper, we present an implementation of a BLE 5.1 based circular antenna array, and perform two experimental evaluations over the quality of the retrieved data sampled from the array. Specifically, we retrieve samples of the phase value of the Constant Tone Extension which enables the direction finding functionalities through calculation of phase differences between antenna pairs. We evaluate the quality of the sampled phase data in an anechoic chamber, and in a real-world environment using a setup composed of four BLE beacons. © 2022 IEEE.

2023

Misalignment-Resilient Propagation Model for Underwater Optical Wireless Links

Autores
Araujo, JH; Tavares, JS; Marques, VM; Salgado, HM; Pessoa, LM;

Publicação
SENSORS

Abstract
This paper proposes a multiple-lens receiver scheme to increase the misalignment tolerance of an underwater optical wireless communications link between an autonomous underwater vehicle (AUV) and a sensor plane. An accurate model of photon propagation based on the Monte Carlo simulation is presented which accounts for the lens(es) photon refraction at the sensor interface and angular misalignment between the emitter and receiver. The results show that the ideal divergence of the beam of the emitter is around 15 degrees for a 1 m transmission length, increasing to 22 degrees for a shorter distance of 0.5 m but being independent of the water turbidity. In addition, it is concluded that a seven-lense scheme is approximately three times more tolerant to offset than a single lens. A random forest machine learning algorithm is also assessed for its suitability to estimate the offset and angle of the AUV in relation to the fixed sensor, based on the power distribution of each lens, in real time. The algorithm is able to estimate the offset and angular misalignment with a mean square error of 5 mm (6 mm) and 0.157 rad (0.174 rad) for a distance between the transmitter and receiver of 1 m and 0.5 m, respectively.

2023

Self-Localization via Circular Bluetooth 5.1 Antenna Array Receiver

Autores
Paulino, N; Pessoa, LM;

Publicação
IEEE ACCESS

Abstract
Future telecommunications aim to be ubiquitous and efficient, as widely deployed connectivity will allow for a variety of edge/fog based services. Challenges are numerous, e.g., spectrum overuse, energy efficiency, latency and bandwidth, battery life and computing power of edge devices. Addressing these challenges is key to compose the backbone for the future Internet-of-Things (IoT). Among IoT applications are Indoor Positioning System and indoor Real-Time-Location-Systems systems, which are needed where GPS is unviable. The Bluetooth Low Energy (BLE) 5.1 specification introduced Direction Finding to the protocol, allowing for BLE devices with antenna arrays to derive the Angle-of-Arrival (AoA) of transmissions. Well known algorithms for AoA calculation are computationally demanding, so recent works have addressed this, since the low-cost of BLE devices may provide efficient solutions for indoor localization. In this paper, we present a system topology and algorithms for self-localization where a receiver with an antenna array utilizes the AoAs from fixed battery powered beacons to self-localize, without a centralized system or wall-power infrastructure. We conduct two main experiments using a BLE receiver of our own design. Firstly, we validate the expected behaviour in an anechoic chamber, computing the AoA with an RMSE of 10.7 degrees conduct a test in an outdoor area of 12 by 12 meters using four beacons, and present pre-processing steps prior to computing the AoAs, followed by position estimations achieving a mean absolute error of 3.6 m for 21 map positions, with a minimum as low as 1.1 m.

2022

Optimizing Packet Reception Rates for Low Duty-Cycle BLE Relay Nodes

Autores
Paulino, N; Pessoa, LM; Branquinho, A; Almeida, R; Ferreira, I;

Publicação
IEEE SENSORS JOURNAL

Abstract
In order to achieve the full potential of the Internet-of-Things, connectivity between devices should be ubiquitous and efficient. Wireless mesh networks are a critical component to achieve this ubiquitous connectivity for a wide range of services, and are composed of terminal devices (i.e., nodes), such as sensors of various types, and wall powered gateway devices, which provide further internet connectivity (e.g., via Wi-Fi). When considering large indoor areas, such as hospitals or industrial scenarios, the mesh must cover a large area, which introduces concerns regarding range and the number of gateways needed and respective wall cabling infrastructure, including data and power. Solutions for mesh networks implemented over different wireless protocols exist, like the recent Bluetooth Low Energy (BLE) 5.1. While BLE provides lower power consumption, some wall-power infrastructure may still be required. Alternatively, if some nodes are battery powered, concerns such as lifetime and packet delivery are introduced. We evaluate a scenario where the intermediate nodes of the mesh are battery powered, using a BLE relay of our own design, which acts as a range extender by forwarding packets from end-nodes to gateways. We present the relay's design and experimentally determine the packet forwarding efficiency for several scenarios and configurations. In the best case, up to 35% of the packets transmitted by 11 end-nodes can be forwarded to a gateway by a single relay under continuous operation. A battery lifetime of 1 year can be achieved with a relay duty cycle of 20%.

  • 10
  • 14