2022
Autores
Ferreira, TD; Rocha, V; Silva, D; Guerreiro, A; Silva, NA;
Publicação
NEW JOURNAL OF PHYSICS
Abstract
The propagation of light in nonlinear optical media has been widely used as a tabletop platform for emulating quantum-like phenomena due to their similar theoretical description to quantum fluids. These fluids of light are often used to study two-dimensional phenomena involving superfluid-like flows, yet turbulent regimes still remain underexplored. In this work, we study the possibility of creating two-dimensional turbulent phenomena and probing their signatures in the kinetic energy spectrum. To that end, we emulate and disturb a fluid of light with an all-optical defect using the propagation of two beams in a photorefractive crystal. Our experimental results show that the superfluid regime of the fluid of light breaks down at a critical velocity at which the defect starts to exert a drag force on the fluid, in accordance with the theoretical and numerical predictions. Furthermore, in this dissipative regime, nonlinear perturbations are excited on the fluid that can decay into vortex structures and thus precede a turbulent state. Using the off-axis digital holography method, we reconstructed the complex description of the output fluids and calculated the incompressible component of the kinetic energy. With these states, we observed the expected power law that characterizes the generated turbulent vortex dipole structures. The findings enclosed in this manuscript align with the theoretical predictions for the vortex structures of two-dimensional quantum fluids and thus may pave the way to the observation of other distinct hallmarks of turbulent phenomena, such as distinct turbulent regimes and their associated power laws and energy cascades.
2022
Autores
Silva, D; Silva, NA; Ferreira, TD; Rosa, CC; Guerreiro, A;
Publicação
EPJ Web of Conferences
Abstract
2022
Autores
Ferreira, TD; Silva, NA; Silva, D; Rosa, CC; Guerreiro, A;
Publicação
Journal of Physics: Conference Series
Abstract
Reservoir computing is a versatile approach for implementing physically Recurrent Neural networks which take advantage of a reservoir, consisting of a set of interconnected neurons with temporal dynamics, whose weights and biases are fixed and do not need to be optimized. Instead, the training takes place only at the output layer towards a specific task. One important requirement for these systems to work is nonlinearity, which in optical setups is usually obtained via the saturation of the detection device. In this work, we explore a distinct approach using a photorefractive crystal as the source of the nonlinearity in the reservoir. Furthermore, by leveraging on the time response of the photorefractive media, one can also have the temporal interaction required for such architecture. If we space out in time the propagation of different states, the temporal interaction is lost, and the system can work as an extreme learning machine. This corresponds to a physical implementation of a Feed-Forward Neural Network with a single hidden layer and fixed random weights and biases. Some preliminary results are presented and discussed. © Published under licence by IOP Publishing Ltd.
2023
Autores
Silva, D; Ferreira, T; Moreira, FC; Rosa, CC; Guerreiro, A; Silva, NA;
Publicação
JOURNAL OF THE EUROPEAN OPTICAL SOCIETY-RAPID PUBLICATIONS
Abstract
Extreme Learning Machines (ELMs) are a versatile Machine Learning (ML) algorithm that features as the main advantage the possibility of a seamless implementation with physical systems. Yet, despite the success of the physical implementations of ELMs, there is still a lack of fundamental understanding in regard to their optical implementations. In this context, this work makes use of an optical complex media and wavefront shaping techniques to implement a versatile optical ELM playground to gain a deeper insight into these machines. In particular, we present experimental evidences on the correlation between the effective dimensionality of the hidden space and its generalization capability, thus bringing the inner workings of optical ELMs under a new light and opening paths toward future technological implementations of similar principles.
2024
Autores
Teixeira, J; Moreira, FC; Oliveira, J; Rocha, V; Jorge, PAS; Ferreira, T; Silva, NA;
Publicação
MEASUREMENT SCIENCE AND TECHNOLOGY
Abstract
Optical tweezers are an interesting tool to enable single cell analysis, especially when coupled with optical sensing and advanced computational methods. Nevertheless, such approaches are still hindered by system operation variability, and reduced amount of data, resulting in performance degradation when addressing new data sets. In this manuscript, we describe the deployment of an automatic and intelligent optical tweezers setup, capable of trapping, manipulating, and analyzing the physical properties of individual microscopic particles in an automatic and autonomous manner, at a rate of 4 particle per min, without user intervention. Reproducibility of particle identification with the help of machine learning algorithms is tested both for manual and automatic operation. The forward scattered signal of the trapped PMMA and PS particles was acquired over two days and used to train and test models based on the random forest classifier. With manual operation the system could initially distinguish between PMMA and PS with 90% accuracy. However, when using test datasets acquired on a different day it suffered a loss of accuracy around 24%. On the other hand, the automatic system could classify four types of particles with 79% accuracy maintaining performance (around 1% variation) even when tested with different datasets. Overall, the automated system shows an increased reproducibility and stability of the acquired signals allowing for the confirmation of the proportionality relationship expected between the particle size and its friction coefficient. These results demonstrate that this approach may support the development of future systems with increased throughput and reliability, for biosciences applications.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.