2017
Autores
Pereira, R; Couto, M; Ribeiro, F; Rua, R; Cunha, J; Fernandes, JP; Saraiva, J;
Publicação
SLE'17: PROCEEDINGS OF THE 10TH ACM SIGPLAN INTERNATIONAL CONFERENCE ON SOFTWARE LANGUAGE ENGINEERING
Abstract
This paper presents a study of the runtime, memory usage and energy consumption of twenty seven well-known software languages. We monitor the performance of such languages using ten different programming problems, expressed in each of the languages. Our results show interesting findings, such as, slower/faster languages consuming less/more energy, and how memory usage influences energy consumption. We show how to use our results to provide software engineers support to decide which language to use when energy efficiency is a concern.
2017
Autores
Couto, M; Pereira, R; Ribeiro, F; Rua, R; Saraiva, J;
Publicação
PROCEEDINGS OF THE 21ST BRAZILIAN SYMPOSIUM ON PROGRAMMING LANGUAGES (SBLP 2017)
Abstract
While in the past the primary goal to optimize software was the run time optimization, nowadays there is a growing awareness of the need to reduce energy consumption. Additionally, a growing number of developers wish to become more energy-aware when programming and feel a lack of tools and the knowledge to do so. In this paper we define a ranking of energy efficiency in programming languages. We consider a set of computing problems implemented in ten well-known programming languages, and monitored the energy consumed when executing each language. Our preliminary results show that although the fastest languages tend to be the lowest consuming ones, there are other interesting cases where slower languages are more energy efficient than faster ones.
2018
Autores
Pereira, R; Couto, M; Ribeiro, F; Rua, R; Saraiva, J;
Publicação
Proceedings of the Seventh Workshop on Software Quality Analysis, Monitoring, Improvement, and Applications, SQAMIA 2018, Novi Sad, Serbia, August 27-30, 2018.
Abstract
This documents introduces \Energyware" as a software engineering discipline aiming at defining, analyzing and optimizing the energy consumption by software systems. In this paper we present energyware analysis in the context of programming languages, software data structures and program's source code. For each of these areas we describe the research work done in the context of the Green Software Laboratory at Minho University: we describe energyaware techniques, tools, libraries, and repositories. © 2018 by the paper's authors.
2019
Autores
Ribeiro, F; Saraiva, J; Pardo, A;
Publicação
XXIII BRAZILIAN SYMPOSIUM ON PROGRAMMING LANGUAGES
Abstract
In this paper, we show how stream fusion, a program transformation technique used in functional programming, can be adapted for an Object-Oriented setting. This makes it possible to have more Stream operators than the ones currently provided by the Java Stream API. The addition of more operators allows for a greater deal of expressiveness. To this extent, we show how these operators are incorporated in the stream setting. Furthermore, we also demonstrate how a specific set of optimizations eliminates overheads and produces equivalent code in the form of for loops. In this way, programmers are relieved from the burden of writing code in such a cumbersome style, thus allowing for a more declarative and intuitive programming approach.
2021
Autores
Pereira, R; Couto, M; Ribeiro, F; Rua, R; Cunha, J; Fernandes, JP; Saraiva, J;
Publicação
SCIENCE OF COMPUTER PROGRAMMING
Abstract
This paper compares a large set of programming languages regarding their efficiency, including from an energetic point-of-view. Indeed, we seek to establish and analyze different rankings for programming languages based on their energy efficiency. The goal of being able to rank programming languages based on their energy efficiency is both recent, and certainly deserves further studies. We have taken rigorous and strict solutions to 10 well defined programming problems, expressed in (up to) 27 programming languages, from the well known Computer Language Benchmark Game repository. This repository aims to compare programming languages based on a strict set of implementation rules and configurations for each benchmarking problem. We have also built a framework to automatically, and systematically, run, measure and compare the energy, time, and memory efficiency of such solutions. Ultimately, it is based on such comparisons that we propose a series of efficiency rankings, based on single and multiple criteria. Our results show interesting findings, such as how slower/faster languages can consume less/more energy, and how memory usage influences energy consumption. We also present a simple way to use our results to provide software engineers and practitioners support in deciding which language to use when energy efficiency is a concern. In addition, we further validate our results and rankings against implementations from a chrestomathy program repository, Rosetta Code., by reproducing our methodology and benchmarking system. This allows us to understand how the results and conclusions from our rigorously and well defined benchmarked programs compare to those based on more representative and real-world implementations. Indeed our results show that the rankings do not change apart from one programming language.
2021
Autores
Ribeiro, F; Abreu, R; Saraiva, J;
Publicação
2021 IEEE 21ST INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY AND SECURITY (QRS 2021)
Abstract
Recent studies show that many real-world software faults are due to slight modifications (mutations) to the program. Thus, analyzing transformations made by a developer and associating them with well-known mutation operators can help pinpoint and repair the root cause of failures. This paper proposes a mutation operator inference technique: given the original program and one of its subsequent forms, it infers which mutation operators would transform the original and produce such a version. Moreover, we implemented this technique as a tool called Morpheus, which analyzes faulty Java programs. We have also validated both the technique and tool by analyzing a repository with 1753 modifications for 20 different programs, successfully inferring mutation operators 78% of times. Furthermore, we also show that several program versions result from not just a single mutation operator but multiple ones. In the end, we resort to real-world case studies to demonstrate the advantages of this approach regarding program repair.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.