Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Tânia Fernandes Melo

2018

Classification of Breast Cancer Histology Images Through Transfer Learning Using a Pre-trained Inception Resnet V2

Autores
Ferreira, CA; Melo, T; Sousa, P; Meyer, MI; Shakibapour, E; Costa, P; Campilho, A;

Publicação
Image Analysis and Recognition - 15th International Conference, ICIAR 2018, Póvoa de Varzim, Portugal, June 27-29, 2018, Proceedings

Abstract
Breast cancer is one of the leading causes of female death worldwide. The histological analysis of breast tissue allows for the differentiation of the tissue suspected to be abnormal into four classes: normal tissue, benign tumor, in situ carcinoma and invasive carcinoma. Automatic diagnostic systems can help in that task. In this sense, this work propose a deep neural network approach using transfer learning to classify breast cancer histology images. First, the added top layers are trained and a second fine-tunning is done on some feature extraction layers that are frozen previously. The used network is an Inception Resnet V2. In order to overcome the lack of data, data augmentation is performed too. This work is a suggested solution for the ICIAR 2018 BACH-Challenge and the accuracy is 0.76 in the blind test set. © 2018, Springer International Publishing AG, part of Springer Nature.

2018

Creation of Retinal Mosaics for Diabetic Retinopathy Screening: A Comparative Study

Autores
Melo, T; Mendonça, AM; Campilho, A;

Publicação
Image Analysis and Recognition - 15th International Conference, ICIAR 2018, Póvoa de Varzim, Portugal, June 27-29, 2018, Proceedings

Abstract
The creation of retinal mosaics from sets of fundus photographs can significantly reduce the time spent on the diabetic retinopathy (DR) screening, because through mosaic analysis the ophthalmologists can examine several portions of the eye at a single glance and, consequently, detect and grade DR more easily. Like most of the methods described in the literature, this methodology includes two main steps: image registration and image blending. In the registration step, relevant keypoints are detected on all images, the transformation matrices are estimated based on the correspondences between those keypoints and the images are reprojected into the same coordinate system. However, the main contributions of this work are in the blending step. In order to combine the overlapping images, a color compensation is applied to those images and a distance-based map of weights is computed for each one. The methodology is applied to two different datasets and the mosaics obtained for one of them are visually compared with the results of two state-of-the-art methods. The mosaics obtained with our method present good quality and they can be used for DR grading. © 2018, Springer International Publishing AG, part of Springer Nature.

2020

IDRiD: Diabetic Retinopathy - Segmentation and Grading Challenge

Autores
Porwal, P; Pachade, S; Kokare, M; Deshmukh, G; Son, J; Bae, W; Liu, LH; Wang, J; Liu, XH; Gao, LX; Wu, TB; Xiao, J; Wang, FY; Yin, BC; Wang, YZ; Danala, G; He, LS; Choi, YH; Lee, YC; Jung, SH; Li, ZY; Sui, XD; Wu, JY; Li, XL; Zhou, T; Toth, J; Bara, A; Kori, A; Chennamsetty, SS; Safwan, M; Alex, V; Lyu, XZ; Cheng, L; Chu, QH; Li, PC; Ji, X; Zhang, SY; Shen, YX; Dai, L; Saha, O; Sathish, R; Melo, T; Araujo, T; Harangi, B; Sheng, B; Fang, RG; Sheet, D; Hajdu, A; Zheng, YJ; Mendonca, AM; Zhang, ST; Campilho, A; Zheng, B; Shen, D; Giancardo, L; Quellec, G; Meriaudeau, F;

Publicação
MEDICAL IMAGE ANALYSIS

Abstract
Diabetic Retinopathy (DR) is the most common cause of avoidable vision loss, predominantly affecting the working-age population across the globe. Screening for DR, coupled with timely consultation and treatment, is a globally trusted policy to avoid vision loss. However, implementation of DR screening programs is challenging due to the scarcity of medical professionals able to screen a growing global diabetic population at risk for DR. Computer-aided disease diagnosis in retinal image analysis could provide a sustainable approach for such large-scale screening effort. The recent scientific advances in computing capacity and machine learning approaches provide an avenue for biomedical scientists to reach this goal. Aiming to advance the state-of-the-art in automatic DR diagnosis, a grand challenge on "Diabetic Retinopathy - Segmentation and Grading" was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI-2018). In this paper, we report the set-up and results of this challenge that is primarily based on Indian Diabetic Retinopathy Image Dataset (IDRiD). There were three principal subchallenges: lesion segmentation, disease severity grading, and localization of retinal landmarks and segmentation. These multiple tasks in this challenge allow to test the generalizability of algorithms, and this is what makes it different from existing ones. It received a positive response from the scientific community with 148 submissions from 495 registrations effectively entered in this challenge. This paper outlines the challenge, its organization, the dataset used, evaluation methods and results of top-performing participating solutions. The top-performing approaches utilized a blend of clinical information, data augmentation, and an ensemble of models. These findings have the potential to enable new developments in retinal image analysis and image-based DR screening in particular.

2020

Optic Disc and Fovea Detection in Color Eye Fundus Images

Autores
Mendonça, AM; Melo, T; Araújo, T; Campilho, A;

Publicação
Image Analysis and Recognition - 17th International Conference, ICIAR 2020, Póvoa de Varzim, Portugal, June 24-26, 2020, Proceedings, Part II

Abstract
The optic disc (OD) and the fovea are relevant landmarks in fundus images. Their localization and segmentation can facilitate the detection of some retinal lesions and the assessment of their importance to the severity and progression of several eye disorders. Distinct methodologies have been developed for detecting these structures, mainly based on color and vascular information. The methodology herein described combines the entropy of the vessel directions with the image intensities for finding the OD center and uses a sliding band filter for segmenting the OD. The fovea center corresponds to the darkest point inside a region defined from the OD position and radius. Both the Messidor and the IDRiD datasets are used for evaluating the performance of the developed methods. In the first one, a success rate of 99.56% and 100.00% are achieved for OD and fovea localization. Regarding the OD segmentation, the mean Jaccard index and Dice’s coefficient obtained are 0.87 and 0.94, respectively. The proposed methods are also amongst the top-3 performing solutions submitted to the IDRiD online challenge. © Springer Nature Switzerland AG 2020.

2020

Microaneurysm detection in color eye fundus images for diabetic retinopathy screening

Autores
Melo, T; Mendonca, AM; Campilho, A;

Publicação
COMPUTERS IN BIOLOGY AND MEDICINE

Abstract
Diabetic retinopathy (DR) is a diabetes complication, which in extreme situations may lead to blindness. Since the first stages are often asymptomatic, regular eye examinations are required for an early diagnosis. As microaneurysms (MAs) are one of the first signs of DR, several automated methods have been proposed for their detection in order to reduce the ophthalmologists' workload. Although local convergence filters (LCFs) have already been applied for feature extraction, their potential as MA enhancement operators was not explored yet. In this work, we propose a sliding band filter for MA enhancement aiming at obtaining a set of initial MA candidates. Then, a combination of the filter responses with color, contrast and shape information is used by an ensemble of classifiers for final candidate classification. Finally, for each eye fundus image, a score is computed from the confidence values assigned to the MAs detected in the image. The performance of the proposed methodology was evaluated in four datasets. At the lesion level, sensitivities of 64% and 81% were achieved for an average of 8 false positives per image (FPIs) in e-ophtha MA and SCREEN-DR, respectively. In the last dataset, an AUC of 0.83 was also obtained for DR detection.

2023

Retinal layer and fluid segmentation in optical coherence tomography images using a hierarchical framework

Autores
Melo, T; Carneiro, A; Campilho, A; Mendonca, AM;

Publicação
JOURNAL OF MEDICAL IMAGING

Abstract
Purpose: The development of accurate methods for retinal layer and fluid segmentation in optical coherence tomography images can help the ophthalmologists in the diagnosis and follow-up of retinal diseases. Recent works based on joint segmentation presented good results for the segmentation of most retinal layers, but the fluid segmentation results are still not satisfactory. We report a hierarchical framework that starts by distinguishing the retinal zone from the background, then separates the fluid-filled regions from the rest, and finally, discriminates the several retinal layers.Approach: Three fully convolutional networks were trained sequentially. The weighting scheme used for computing the loss function during training is derived from the outputs of the networks trained previously. To reinforce the relative position between retinal layers, the mutex Dice loss (included for optimizing the last network) was further modified so that errors between more distant layers are more penalized. The method's performance was evaluated using a public dataset.Results: The proposed hierarchical approach outperforms previous works in the segmentation of the inner segment ellipsoid layer and fluid (Dice coefficient = 0.95 and 0.82, respectively). The results achieved for the remaining layers are at a state-of-the-art level.Conclusions: The proposed framework led to significant improvements in fluid segmentation, without compromising the results in the retinal layers. Thus, its output can be used by ophthalmologists as a second opinion or as input for automatic extraction of relevant quantitative biomarkers.

  • 1
  • 2