Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Gaspar Rego

2001

EDFA gain flattening using long-period fibre gratings based on the electric arc technique

Autores
Frazao, O; Rego, G; Lima, M; Teixeira, A; Araujo, FM; Andre, P; da Rocha, JF; Salgado, HM;

Publicação
LONDON COMMUNICATIONS SYMPOSIUM 2001, PROCEEDINGS

Abstract
We have flattened the gain spectrum of a commercial Erbium-doped fibre amplifier, obtaining a curve with approximately 3 dB of ripple, from 1524 nm to 1551 nm, using long-period fibre gratings as equalising optical filters. The fabrication principle of the long-period fibre grating is based on the electric arc technique.

2023

Temperature Dependence of the Thermo-Optic Coefficient of SiO2 Glass

Autores
Rego, G;

Publicação
SENSORS

Abstract
This paper presents a thorough analysis on the temperature dependence of the thermo-optic coefficient, dn/dT, of four bulk annealed pure-silica glass samples (type I-natural quartz: Infrasil 301; type II-quartz crystal powder: Heraeus Homosil; type III-synthetic vitreous silica: Corning 7980 and Suprasil 3001) from room temperature down to 0 K. The three/four term temperature dependent Sellmeier equations and respective coefficients were considered, which results from fitting to the raw data obtained by Leviton et al. The thermo-optic coefficient was extrapolated down to zero Kelvin. We have obtained dn/dT values ranging from 8.16 x 10(-6) up to 8.53 x 10(-6) for the four samples at 293 K and for a wavelength of 1.55 & mu;m. For the Corning 7980 SiO2 glass, the thermo-optic coefficient decreases monotonically, from 8.74 x 10(-6) down to 8.16 x 10(-6), from the visible range up to the third telecommunication window, being almost constant above 1.3 & mu;m. The Ghosh's model was revisited, and it was concluded that the thermal expansion coefficient only accounts for about 2% of the thermo-optic coefficient, and we have obtained an expression for the temperature behavior of the silica excitonic bandgap. Wemple's model was also analyzed where we have also considered the material dispersion in order to determine the coefficients and respective temperature dependences. The limitations of this model were also discussed.

  • 13
  • 13