2019
Autores
Robalinho, P; Frazao, O;
Publicação
FIBERS
Abstract
This work consists of using an optical fiber microsphere as a sensor for a wide range of curvature radii. The microsphere was manufactured in a standard fiber with an electric arc. In order to maximize system efficiency, the microsphere was spliced in the center of a taper. This work revealed that the variations of the wavelength where the maxima and minima of the spectrum are located varies linearly with the curvature of the system with a maximum sensitive of 580 +/- 20 (pm km). This is because the direction of the input beam in the microsphere depends on the system curvature, giving rise to interferometric variations within the microsphere.
2019
Autores
Robalinho, P; Frazao, O;
Publicação
SENSORS
Abstract
This work demonstrates the potential of combining a microsphere with a tip for the functionality of the contact sensor. This sensor consists of a tip aligned with the fiber core and a microsphere, which appears during tip formation. This new structure was produced using the electric arc machine. The sensor operation consists of the variation of the tip curvature, which causes a variation of the optical paths and, consequently, a change in the output signal. The study of this micro-cantilever consisted of an exploration of the contact mode. In addition, the sensor was characterized by temperature, which shows very low sensitivity and vibration. This last characterization was performed with two configurations parallel and perpendicular to the oscillating surface. The perpendicular case showed higher sensitivity and has an operating band of 0 Hz to 20 kHz. In this configuration, for frequencies up to 2 Hz, the intensity varies linearly with the frequencies and with a sensitivity of 0.032 +/- 0.001 (Hz(-1)). For the parallel case, the operating band was from 1.5 kHz to 7 kHz.
2020
Autores
Ribeiro Robalinho, PMR; Gomes, AD; Frazao, O;
Publicação
IEEE PHOTONICS TECHNOLOGY LETTERS
Abstract
In this letter, a strain sensor with high sensitivity enhancement using a special case of Vernier effect is presented. The sensor configuration is composed of two-fiber loop mirrors in a cascaded configuration with opposite strain responses when individually characterized. Thus, the enhanced Vernier effect is explored, which is the most sensitive of three possible cases Vernier effect. Here, the Vernier response depends on the difference between the sensitivities of each Hi-Bi optical fiber. In addition to this, the fundamental and the first harmonic were also explored. The results obtained are a strain sensitivity of (13.3 +/- 0.3) pm/mu epsilon for the carrier, (80.0 +/- 0.3) pm/mu epsilon or the Vernier envelope of the fundamental case and (120 +/- 1) pm/mu epsilon for the Vernier envelope of the first harmonic. The first harmonic could achieve a magnification factor of 8. Considering that the optical interrogation system allows a minimum resolution of 0.02 nm, the minimum measurement step achievable is 0.2 mu epsilon. This work proves the possibility of applying the concept of enhanced Vernier effect to fiber loop mirrors, obtaining higher sensitivity than a standard fiber loop mirror alone. Besides, the sensitivity can be increased through the usage of harmonics of the Vernier effect. Moreover, the use of large interferometers allows a better discretization of the envelope, which implies a greater ease of analysis.
2021
Autores
Robalinho, P; Frazao, O;
Publicação
IEEE PHOTONICS TECHNOLOGY LETTERS
Abstract
This letter presents a new optical fiber structure with the capability of measuring nano-displacement. This device is composed by a cleaved fiber and a drop-shaped microstructure that is connected to the fiber cladding. This optical structure is responsible for the light beam division and the formation of new optical paths. The operation mode consists of the Vernier effect that allows achieving higher sensitivity than the currently sensors. During the experimental execution, displacement sensitivities of 1.05 +/- 0.01 nm , 15.1 +/- 0.1 nm, 24.7 +/- 0.3 nm and 28.3 +/- 0.3 nm , were achieved for the carrier, the fundamental of the envelope, the first harmonic and the second harmonic, respectively. The M-factor of 27 was attained, allowing a minimum resolution of 0.7 nm. In addition to displacement sensing, the proposed optical sensor can be used as a cantilever enabling non-evasive measurements.
2021
Autores
Robalinho, P; Gomes, A; Frazao, O;
Publicação
IEEE SENSORS JOURNAL
Abstract
In this work, a colossal enhancement of strain sensitivities through the push-pull deformation method in interferometry is reported for the first time. For the demonstration of the new method, two cascaded interferometers in a fiber loop mirror are used. Usually, strain is applied at the fiber end of the interferometers. In this work, we propose applying strain at the middle of the two cascaded interferometers whereas the fiber ends of the sensor are fixed. Strain is then applied in the fusion region between the two-cascaded interferometers in a push-pull configuration, thus ensuring simultaneously the extension of one interferometer and the compression of the other. Although the carrier signal is maintained constant, the proposed technique induces a colossal enhancement of sensitivity in the envelope signal. Strain sensitivities up to 10000 pm/ $\mu \varepsilon $ are achieved.
2021
Autores
Robalinho, P; Frazao, O;
Publicação
PHOTONICS
Abstract
We present a giant sensitivity displacement sensor combining the push-pull method and enhanced Vernier effect. The displacement sensor consists in two interferometers that are composed by two cleaved standard optical fibers coupled by a 3 dB coupler and combined with a double-sided mirror. The push pull-method is applied to the mirror creating a symmetrical change to the length of each interferometer. Furthermore, we demonstrate that the Vernier effect has a maximum sensitivity of two-fold that obtained with a single interferometer. The combination of the push-pull method and the Vernier effect in the displacement sensors allows a sensitivity of 60 +/- 1 nm/mu m when compared with a single interferometer working in the same free spectral range. In addition, exploring the maximum performance of the displacement sensors, a sensitivity of 254 +/- 6 nm/mu m is achieved, presenting a M-factor of 1071 and M-Vernier of 1.9 corresponding to a resolution of 79 pm. This new solution allows the implementation of giant-sensitive displacement measurement for a wide range of applications.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.