Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Paulo Vicente Marques

2005

Chirped Bragg grating fabricated in fused fibre taper for strain-temperature discrimination

Autores
Frazao, O; Melo, M; Marques, PVS; Santos, JL;

Publicação
MEASUREMENT SCIENCE & TECHNOLOGY

Abstract
In this work, two sensing heads based on the fibre Bragg gratings written in fused biconical fibre taper for simultaneous measurement of temperature and strain are proposed. In the first configuration a comparison between a uniform Bragg grating and a grating written on a tapered fibre section, resulting in a chirp grating, is evaluated. The second sensing head consists of two gratings written in two different regions of the taper section. This fibre taper has a different geometry in each conical section, achieved by stretching the fibre at different velocities during the fabrication process. These two configurations are based on the different strain and similar temperature sensitivities of the Bragg gratings used to discriminate the two physical parameters. The performances are assessed and compared. The second structure presents good performance and more sensitivity, compared to the first sensing head.

2009

Fabry-Perot refractometer based on an end-of-fiber polymer tip

Autores
Frazao, O; Caldas, P; Santos, JL; Marques, PVS; Turck, C; Lougnot, DJ; Soppera, O;

Publicação
OPTICS LETTERS

Abstract
A micrometric Fabry-Perot refractometer based on an end-of-fiber polymer tip is proposed. The fiber tip, with a length of 36 mu m, was fabricated by self-guiding photopolymerization. The two-wave interferometric operation was achieved by combining the light waves generated at the interface between the single-mode fiber and the polymer tip, and at the fiber tip end (Fresnel reflection). The Fabry-Perot interferometer is coherence addressed and heterodyne interrogated, resulting into a liquid refractive index resolution of approximate to 7.5 x 10(-4). (C) 2009 Optical Society of America

2012

Temperature and Strain Sensing With Femtosecond Laser Written Bragg Gratings in Defect and Nondefect Suspended-Silica-Core Fibers

Autores
Fernandes, LA; Becker, M; Frazao, O; Schuster, K; Kobelke, J; Rothhardt, M; Bartelt, H; Santos, JL; Marques, PVS;

Publicação
IEEE PHOTONICS TECHNOLOGY LETTERS

Abstract
The spectral behavior in the C-band of fiber Bragg gratings (FBGs) was analyzed as a function of temperature and strain. The FBGs were fabricated in pure silica four-leaf-clover- shaped suspended-core fibers by (DUV) femtosecond laser exposure (3.6 W at 800 nm, 130 fs, 1 kHz frequency tripled to 350 fs, 650 mW at 267 nm). A defect fiber (with a hollow hole in the core) and nondefect fiber were compared both yielding approximate to 1 pm/mu epsilon sensitivity to strain but different sensitivity to temperature (from 3.0 pm/degrees C to 8.4 pm/degrees C for the defect fiber and 10 pm/degrees C for the nondefect fiber). The 16% to 70% relative difference between the thermal coefficients of the two fibers, together with their similar strain sensitivity enables the simultaneous measurement of strain and temperature.

2005

Short in-fibre Bragg grating structure for simultaneous measurement of strain and temperature

Autores
Frazao, O; Melo, M; Romero, R; Marques, PVS; Araujo, FM; Ferreira, LA; Santos, JL;

Publicação
17th International Conference on Optical Fibre Sensors, Pts 1 and 2

Abstract
The study of a single short length Bragg grating for sensing applications is presented. The dependences of the central wavelength, reflected optical power and spectral width of a 250 mu m length grating on strain and temperature are analyzed. The obtained results indicate the feasibility of this novel sensing head for simultaneous measurement of strain and temperature.

2007

Fabrication and test of an integrated optical sensor with high sensitivity and high dynamic range based on a Mach-Zehnder interferometric configuration

Autores
Alexandre, D; Viegas, J; Fernandes, L; Moreira, PJ; Leite, AMP; Santos, JL; Marques, PVS;

Publicação
Optical Sensing Technology and Applications

Abstract
Integrated optics (IO) technology has been primarily used in optical communication applications but it is expanding fast into the field of optical sensing. In this work we report the fabrication of integrated devices using hybrid sol-gel technology and in particular its application in the fabrication of a refractive index integrated sensor based in a Mach-Zehnder interferometric configuration. In one of the interferometer arms, a analysis chamber is created by exposing the waveguide through the removal of the device cladding. On the same arm, two Bragg gratings with the same period are fabricated: one in the unprotected waveguide area and another in close proximity (cladded area); because of the different effective index in the two grating regions, two peaks are observed in reflection if the device is tested with a broadband source. Any change of the refractive index of the material filling the analysis chamber can be detected in two ways: by measuring the intensity of the interferometric output (at a wavelength different from the Bragg wavelength of the two gratings) or by measuring the spectrum of the reflected signal. The high sensitivity is obtained by measuring the interferometric output, while the high dynamic range can be achieved by measuring the reflected signal from the grating structures.

2007

Design and optimization of slotted multimode interference devices for chemical and biochemical sensing - art. no. 66191O

Autores
Mayeh, M; Viegas, J; Marques, P; Santos, JL; Farahi, F;

Publicação
Third European Workshop on Optical Fibre Sensors

Abstract
The major achievements in the field of optical sensors in the past two decades have remained mostly limited to the laboratory demonstrations. There are very few examples of optical sensors, which have been reduced to practice, and have established themselves in major markets. The main bottleneck in this field is the issue of manufacturability. In this paper we present optical sensors based on slotted multimode interference waveguides. We show that the sensitivity increases proportionally to the number of slots. The sensor can be tuned to highest sensitivity in the refractive index ranges necessary to detect protein-based molecules or other water-soluble chemical or biological materials. The material of choice is a sol-gel (ORMOCER) matrix that after completion of the process becomes mostly glass and it is highly stable. Sensors made with this technology are suited to high volume manufacturing.

  • 20
  • 24