2025
Autores
Mota, A; Serôdio, C; Briga-Sá, A; Valente, A;
Publicação
SENSORS
Abstract
Most human time is spent indoors, and due to the pandemic, monitoring indoor air quality (IAQ) has become more crucial. In this study, an IoT (Internet of Things) architecture is implemented to monitor IAQ parameters, including CO2 and particulate matter (PM). An ESP32-C6-based device is developed to measure sensor data and send them, using the MQTT protocol, to a remote InfluxDBv2 database instance, where the data are stored and visualized. The Python 3.11 scripting programming language is used to automate Flux queries to the database, allowing a more in-depth data interpretation. The implemented system allows to analyze two measured scenarios during sleep: one with the door slightly open and one with the door closed. Results indicate that sleeping with the door slightly open causes CO2 levels to ascend slowly and maintain lower concentrations compared to sleeping with the door closed, where CO2 levels ascend faster and the maximum recommended values are exceeded. This demonstrates the benefits of ventilation in maintaining IAQ. The developed system can be used for sensing in different environments, such as schools or offices, so an IAQ assessment can be made. Based on the generated data, predictive models can be designed to support decisions on intelligent natural ventilation systems, achieving an optimized, efficient, and ubiquitous solution to moderate the IAQ.
2025
Autores
Ferreira, L; Bias, ED; Barros, QS; Pádua, L; Matricardi, EAT; Sousa, JJ;
Publicação
FORESTS
Abstract
Reduced-impact logging (RIL) has been recognized as a promising strategy for biodiversity conservation and carbon sequestration within sustainable forest management (SFM) areas. However, monitoring the forest understory-a critical area for assessing logging impacts-remains challenging due to limitations in conventional methods such as field inventories and global navigation satellite system (GNSS) surveys, which are time-consuming, costly, and often lack accuracy in complex environments. Additionally, aerial and satellite imagery frequently underestimate the full extent of disturbances as the forest canopy obscures understory impacts. This study examines the effectiveness of the relative density model (RDM), derived from airborne LiDAR data, for mapping and monitoring understory disturbances. A field-based validation of LiDAR-derived RDM was conducted across 25 sites, totaling 5504.5 hectares within the Jamari National Forest, Rond & ocirc;nia, Brazil. The results indicate that the RDM accurately delineates disturbances caused by logging infrastructure, with over 90% agreement with GNSS field data. However, the model showed the greatest discrepancy for skid trails, which, despite their lower accuracy in modeling, accounted for the largest proportion of the total impacted area among infrastructure. The findings include the mapping of 35.1 km of primary roads, 117.4 km of secondary roads, 595.6 km of skid trails, and 323 log landings, with skid trails comprising the largest proportion of area occupied by logging infrastructure. It is recommended that airborne LiDAR assessments be conducted up to two years post-logging, as impacts become less detectable over time. This study highlights LiDAR data as a reliable alternative to traditional monitoring approaches, with the ability to detect understory impacts more comprehensively for monitoring selective logging in SFM areas of the Amazon, providing a valuable tool for both conservation and climate mitigation efforts.
2025
Autores
Gameiro, T; Pereira, T; Moghadaspoura, H; Di Giorgio, F; Viegas, C; Ferreira, N; Ferreira, J; Soares, S; Valente, A;
Publicação
ALGORITHMS
Abstract
The autonomous navigation of unmanned ground vehicles (UGVs) in unstructured environments, such as agricultural or forestry settings, has been the subject of extensive research by various investigators. The navigation capability of a UGV in unstructured environments requires considering numerous factors, including the quality of data reception that allows reliable interpretation of what the UGV perceives in a given environment, as well as the use these data to control the UGV's navigation. This article aims to study different PID control algorithms to enable autonomous navigation on a robotic platform. The robotic platform consists of a forestry tractor, used for forest cleaning tasks, which was converted into a UGV through the integration of sensors. Using sensor data, the UGV's position and orientation are obtained and utilized for navigation by inputting these data into a PID control algorithm. The correct choice of PID control algorithm involved the study, analysis, and implementation of different controllers, leading to the conclusion that the Vector Field control algorithm demonstrated better performance compared to the others studied and implemented in this paper.
2025
Autores
Gonçalves, A; Pereira, T; Lopes, D; Cunha, F; Lopes, F; Coutinho, F; Barreiros, J; Durães, J; Santos, P; Simões, F; Ferreira, P; Freitas, DC; Trovão, F; Santos, V; Ferreira, P; Ferreira, M;
Publicação
Automation
Abstract
This paper presents a method for position correction in collaborative robots, applied to a case study in an industrial environment. The case study is aligned with the GreenAuto project and aims to optimize industrial processes through the integration of various hardware elements. The case study focuses on tightening a specific number of nuts onto bolts located on a partition plate, referred to as “Cloison”, which is mounted on commercial vans produced by Stellantis, to secure the plate. The main challenge lies in deviations that may occur in the plate during its assembly process, leading to uncertainties in its fastening to the vehicles. To address this and optimize the process, a collaborative robot was integrated with a 3D vision system and a screwdriving system. By using the 3D vision system, it is possible to determine the bolts’ positions and adjust them within the robot’s frame of reference, enabling the screwdriving system to tighten the nuts accurately. Thus, the proposed method aims to integrate these different systems to tighten the nuts effectively, regardless of the deviations that may arise in the plate during assembly. © 2025 by the authors.
2024
Autores
Deguchi, T; Baltazar, AR; dos Santos, FN; Mendonça, H;
Publicação
ROBOT 2023: SIXTH IBERIAN ROBOTICS CONFERENCE, VOL 2
Abstract
Since the advent of agriculture, humans have considered phytopharmaceutical products to control pests and reduce losses in farming. Sometimes some of these products, such pesticides, can potentially harm the soil life. In the literature there is evidence that AI and image processing can have a positive contribution to reduce phytopharmaceutical losses, when used in variable rate sprayers. However, it is possible to improve the existing sprayer system's precision, accuracy, and mechanical aspects. This work proposes spraying solution called GraDeS solution (Grape Detection Sprayer). GraDeS solution is a sprayer with two degrees of freedom, controlled by a AI-based algorithm to precisely treat grape bunches diseases. The experiments with the designed sprayer showed two key points. First, the deep learning algorithm recognized and tracked grape bunches. Even with structure movement and bunch covering, the algorithm employs several strategies to keep track of the discovered objects. Second, the robotic sprayer can improve precision in specified areas, such as exclusively spraying grape bunches. Because of the structure's reduced size, the system can be used in medium and small robots.
2024
Autores
Levin, TB; Oliveira, JM; Sousa, RB; Silva, MF; Parreira, BS; Sobreira, HM; Mendonça, HS;
Publicação
2024 7TH IBERIAN ROBOTICS CONFERENCE, ROBOT 2024
Abstract
Human oversight can benefit scenarios with complex tasks, such as pallet docking and loading and unloading containers, beyond the current capabilities of autonomous systems without any failures. Furthermore, teleoperation systems allow remote control of mobile ground robots, especially with the surge of 5G technology that promises reliable and low latency communication. Current works research on exploring the latest features from the 5G standard, including ultra-Reliable Low-Latency Communication (uRLLC) and network slicing. However, these features may not be available depending on the Internet Service Provider (ISP) and communication devices. Thus, this work proposes a network architecture for the teleoperation of ground mobile robots in industrial environments using commercially available devices over the 5G Non-Standalone (NSA) standard. Experimental results include an evaluation of the network and End-to-End (E2E) latency of the proposed system. The results show that the proposed architecture enables teleoperation, achieving an average E2E latency of 347.19 ms.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.