Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Daniel Filipe Campos

2022

Modular Multi-Domain Aware Autonomous Surface Vehicle for Inspection

Autores
Campos, DF; Matos, A; Pinto, AM;

Publicação
IEEE ACCESS

Abstract
A growing interest in ocean exploration for scientific and commercial research has been shown, mainly due to the technological developments for maritime and offshore industries. The use of Autonomous surface vehicles (ASV) have a promising role to revolutionize the transportation, monitorization, operation and maintenance areas, allowing to perform distinct task from offshore assets inspection to harbor patrolling. This work presents SENSE, an autonomouS vEssel for multi-domaiN inSpection and maintEnance. It provides an open-source hardware and software architecture that is easy to replicate for both research institutes and industry. This is a multi-purpose vehicle capable of acquiring multi-domain data for inspecting and reconstructing maritime infrastructures. SENSE provides a research platform which can increase the situational awareness capabilities for ASVs. SENSE full configuration provides multimodal sensory data acquired from both domains using a Light Detection And Ranging (LiDAR), a stereoscopic camera, and a multibeam echosounder. In addition, it supplies navigation information obtained from a real-time kinematic satellite navigation system and inertial measurement units. Moreover, the tests performed at the harbor of Marina de Leca, at Porto, Portugal, resulted in a dataset which captures a fully operational harbor. It illustrates several conditions on maritime scenarios, such as undocking and docking examples, crossings with other vehicles and distinct types of moored vessels. The data available represents both domains of the maritime scenario, being the first public dataset acquired for multi-domain observation using a single vehicle. This paper also provides examples of applications for navigation and inspection on multi-domain scenarios, such as odometry estimation, bathymetric surveying and multi-domain mapping.

2023

ATLANTIS Coastal Testbed: A near-real playground for the testing and validation of robotics for O&M

Autores
Pinto, AM; Marques, JVA; Abreu, N; Campos, DF; Pereira, MI; Gonçalves, E; Campos, HJ; Pereira, P; Neves, F; Matos, A; Govindaraj, S; Durand, L;

Publicação
OCEANS 2023 - LIMERICK

Abstract
The demonstration of robotic technologies in real environments is essential for technology developers and end-users to fully showcase the benefits of theirs solutions, and contributes to the promotion of the transition of inspection and maintenance methodologies towards automated robotic strategies. However, before allowing technologies to be demonstrated in real, operating offshore wind-farms, there is a need to de-risk the technology, to ensure its safe operation offshore. As part of the ATLANTIS project, a pioneer pilot infrastructure, the ATLANTIS Test Centre, was installed in Viana do Castelo, Portugal. This infrastructure will allow the demonstration of key enabling robotic technologies for offshore inspection and maintenance. The Test Centre is composed of two distinct testbeds, and a supervisory control centre, enabling the de-risking, testing, validation and demonstration of technologies, in both near-real and real environments. This paper presents the details of the Coastal Testbed of the ATLANTIS Test Centre, from implementation to available resources and infrastructures and environment details.

2023

Shore Control Centre for Multi-Domain Heterogeneous Robotic Vehicles

Autores
Neves, FS; Campos, HJ; Campos, DF; Claro, RM; Almeida, PN; Marques, JV; Pinto, AM;

Publicação
OCEANS 2023 - LIMERICK

Abstract
Given the increased interest in offshore wind energy, there is a greater need for advancements in operation and maintenance technology. As a result, robotic solutions are required to avoid human risky behavior and reduce associated operational costs. In order to accommodate the need for inspecting multiple domains, multiple robotic vehicles are utilized, which requires the deployment of control stations that can effectively monitor, facilitate communication among different vehicles, and ensure successful completion of the overall mission. A shore control centre (SCC) is a communication software infrastructure capable of monitoring, localizing and planning missions for a group of multi-domain heterogeneous robots within a local network. This paper proposes an SCC as: (i) an active monitor by continuously observing the local behaviour of each robot and the global progress of the mission and its safety; (ii) a mission planner that provides and supervises its execution while constantly checking for critical failures and intervening in the case of unexpected events. Also, The control centre is able to connect to multiple vehicles from various domains and monitor real-time data. Accordingly, validation procedures were carried out in real conditions.

2024

Nautilus: An autonomous surface vehicle with a multilayer software architecture for offshore inspection

Autores
Campos, DF; Goncalves, EP; Campos, HJ; Pereira, MI; Pinto, AM;

Publicação
JOURNAL OF FIELD ROBOTICS

Abstract
The increasing adoption of robotic solutions for inspection tasks in challenging environments is becoming increasingly prevalent, particularly in the offshore wind energy industry. This trend is driven by the critical need to safeguard the integrity and operational efficiency of offshore infrastructure. Consequently, the design of inspection vehicles must comply with rigorous requirements established by the offshore Operation and Maintenance (O&M) industry. This work presents the design of an autonomous surface vehicle (ASV), named Nautilus, specifically tailored to withstand the demanding conditions of offshore O&M scenarios. The design encompasses both hardware and software architectures, ensuring Nautilus's robustness and adaptability to the harsh maritime environment. It presents a compact hull capable of operating in moderate sea states (wave height up to 2.5 m), with a modular hardware and software architecture that is easily adapted to the mission requirements. It has a perception payload and communication system for edge and real-time computing, communicates with a Shore Control Center and allows beyond visual line-of-sight operations. The Nautilus software architecture aims to provide the necessary flexibility for different mission requirements to offer a unified software architecture for O&M operations. Nautilus's capabilities were validated through the professional testing process of the ATLANTIS Test Center, involving operations in both near-real and real-world environments. This validation process culminated in Nautilus's reaching a Technology Readiness Level 8 and became the first ASV to execute autonomous tasks at a floating offshore wind farm located in the Atlantic.

  • 4
  • 4