2018
Autores
Soares, J; Silva, N; Shah, V; Rodrigues, H;
Publicação
2018 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS WORKSHOPS (PERCOM WORKSHOPS)
Abstract
Road pavement conditions influence the daily lives of both drivers and passengers. Anomalies in road pavement can cause discomfort, increase stress, cause mechanical failures in vehicles and compromise safety of road users. Detecting and surveying road condition/anomalies requires expensive and specially designed equipment and vehicles, that cost considerable amounts of money, and require specialized workers to operate them. As an alternative, an emergent sensing paradigm is being discussed as a promising mechanism for collecting large-scale real-world data. In this paper we describe our experience on the design, implementation and deployment of a cloud based road anomaly information management service, that combines Collaborative Mobile Sensing and data-mining approaches, to provide a practical solution for detecting, identifying and managing road anomaly information. Additionally, we identify technical challenges and propose guidelines that may help to improve this type of services and applications. © 2018 IEEE.
2018
Autores
Silva, N; Shah, V; Soares, J; Rodrigues, H;
Publicação
SENSORS
Abstract
Anomalies on road pavement cause discomfort to drivers and passengers, and may cause mechanical failure or even accidents. Governments spend millions of Euros every year on road maintenance, often causing traffic jams and congestion on urban roads on a daily basis. This paper analyses the difference between the deployment of a road anomalies detection and identification system in a "conditioned" and a real world setup, where the system performed worse compared to the "conditioned" setup. It also presents a system performance analysis based on the analysis of the training data sets; on the analysis of the attributes complexity, through the application of PCA techniques; and on the analysis of the attributes in the context of each anomaly type, using acceleration standard deviation attributes to observe how different anomalies classes are distributed in the Cartesian coordinates system. Overall, in this paper, we describe the main insights on road anomalies detection challenges to support the design and deployment of a new iteration of our system towards the deployment of a road anomaly detection service to provide information about roads condition to drivers and government entities.
2021
Autores
Soares, J; Fernandez, R; Silva, M; Freitas, T; Martins, R;
Publicação
Network and System Security - 15th International Conference, NSS 2021, Tianjin, China, October 23, 2021, Proceedings
Abstract
Byzantine fault tolerant (BFT) protocols are designed to increase system dependability and security. They guarantee liveness and correctness even in the presence of arbitrary faults. However, testing and validating BFT systems is not an easy task. As is the case for most concurrent and distributed applications, the correctness of these systems is not solely dependant on algorithm and protocol correctness. Ensuring the correct behaviour of BFT systems requires exhaustive testing under real-world scenarios. An approach is to use fault injection tools that deliberate introduce faults into a target system to observe its behaviour. However, existing tools tend to be designed for specific applications and systems, thus cannot be used generically. We argue that more advanced and powerful tools and frameworks are needed for testing the security and safety of distributed applications in general, and BFT systems in particular. Specifically, a fault injection framework that can be integrated into both client and server side applications, for testing them exhaustively. We present ZERMIA, a modular and extensible fault injection framework, designed for testing and validating concurrent and distributed applications. We validate ZERMIA’s principles by conduction a series of experiments on a distributed applications and a state of the art BFT library, to show the benefits of ZERMIA for testing and validating applications. © 2021, Springer Nature Switzerland AG.
2018
Autores
Soares, J; Preguiça, N;
Publicação
Proceedings of the 30th Annual ACM Symposium on Applied Computing
Abstract
2022
Autores
Soares, J; Pinheiro, A; Esteves, PJ;
Publicação
FRONTIERS IN IMMUNOLOGY
Abstract
The European rabbit (Oryctolagus cuniculus) was the first animal model used to understand human diseases like rabies and syphilis. Nowadays, the rabbit is still used to study several human infectious diseases like syphilis, HIV and papillomavirus. However, due to several mainly practical reasons, it has been replaced as an animal model by mice (Mus musculus). The rabbit and mouse share a recent common ancestor and are classified in the superorder Glires which arose at approximately 82 million years ago (mya). These species diverged from the Primates' ancestor at around 92 million years ago and, as such, one expects the rabbit-human and mouse-human genetic distances to be very similar. To evaluate this hypothesis, we developed a set of tools for automatic data extraction, sequence alignment and similarity study, and a web application for visualization of the resulting data. We aligned and calculated the genetic distances for 2793 innate immune system genes from human, rabbit and mouse using sequences available in the NCBI database. The obtained results show that the rabbit-human genetic distance is lower than the mouse-human genetic distance for 88% of these genes. Furthermore, when we considered only genes with a difference in genetic distance higher than 0.05, this figure increase to 93%. These results can be explained by the increase of the mutation rates in the mouse lineage suggested by some authors and clearly show that, at least looking to the genetic distance to human genes, the European rabbit is a better model to study innate immune system genes than the mouse.
2023
Autores
Freitas, T; Soares, J; Correia, ME; Martins, R;
Publicação
COMPUTERS & SECURITY
Abstract
Byzantine Fault tolerant (BFT) protocols are implemented to guarantee the correct system/application behavior even in the presence of arbitrary faults (i.e., Byzantine faults). Byzantine Fault tolerant State Machine Replication (BFT-SMR) is a known software solution for masking arbitrary faults and malicious attacks (Liu et al., 2020). In this survey, we present and discuss relevant BFT-SMR protocols, focusing on deterministic and probabilistic approaches. The main purpose of this paper is to discuss the characteristics of proposed works for each approach, as well as identify the trade-offs for each different approach.& COPY; 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.