2019
Autores
Leite, P; Silva, R; Matos, A; Pinto, AM;
Publicação
2019 19TH IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC 2019)
Abstract
Autonomous Surface Vehicles (ASVs) provide the ideal platform to further explore the many opportunities in the cargo shipping industry, by making it more profitable and safer. This paper presents an architecture for the autonomous docking operation, formed by two stages: a maneuver module and, a situational awareness system to detect a mooring facility where an ASV can safely dock. Information retrieved from a 3D LIDAR, IMU and GPS are combined to extract the geometric features of the floating platform and to estimate the relative positioning and orientation of the moor to the ASV. Then, the maneuver module plans a trajectory to a specific position and guarantees that the ASV will not collide with the mooring facility. The approach presented in this paper was validated in distinct environmental and weather conditions such as tidal waves and wind. The results demonstrate the ability of the proposed architecture for detecting the docking platform and safely conduct the navigation towards it, achieving errors up to 0.107 m in position and 6.58 degrees in orientation.
2019
Autores
Silva, R; Leite, P; Campos, D; Pinto, AM;
Publicação
2019 19TH IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC 2019)
Abstract
Shipping transportation mode needs to be even more efficient, profitable and secure as more than 80% of the world's trade is done by sea. Autonomous ships will provide the possibility to eliminate the likelihood of human error, reduce unnecessary crew costs and increase the efficiency of the cargo spaces. Although a significant work is being made, and new algorithms are arising, they are still a mirage and still have some problems regarding safety, autonomy and reliability. This paper proposes an online obstacle avoidance algorithm for Autonomous Surfaces Vehicles (ASVs) introducing the reachability with the protective zone concepts. This method estimates a collision-free velocity based on inner and outer constraints such as, current velocity, direction, maximum speed and turning radius of the vehicle, position and dimensions of the surround obstacles as well as a movement prediction in a close future. A non-restrictive estimative for the speed and direction of the ASV is calculated by mapping a conflict zone, determined by the course of the vehicle and the distance to obstacles that is used to avoid imminent dangerous situations. A set of simulations demonstrates the ability of this method to safely circumvent obstacles in several scenarios with different weather conditions.
2020
Autores
Leite, PN; Silva, RJ; Campos, DF; Pinto, AM;
Publicação
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Abstract
A dense and accurate disparity map is relevant for a large number of applications, ranging from autonomous driving to robotic grasping. Recent developments in machine learning techniques enable us to bypass sensor limitations, such as low resolution, by using deep regression models to complete otherwise sparse representations of the 3D space. This article proposes two main approaches that use a single RGB image and sparse depth information gathered from a variety of sensors/techniques (stereo, LiDAR and Light Stripe Ranging (LSR)): a Convolutional Neural Network (CNN) and a cascade architecture, that aims to improve the results of the first. Ablation studies were conducted to infer the impact of these depth cues on the performance of each model. The models trained with LiDAR sparse information are the most reliable, achieving an average Root Mean Squared Error (RMSE) of 11.8 cm on our own Inhouse dataset; while the LSR proved to be too sparse of an input to compute accurate predictions on its own. © Springer Nature Switzerland AG 2020.
2020
Autores
Silva, RJ; Leite, PN; Pinto, AM;
Publicação
2020 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC 2020)
Abstract
The use of robotic solutions in tasks such as the inspection and monitorization of offshore wind farms aims to, not only mitigate the involved risks, but also to reduce the costs of operating and maintaining these structures. Performing a complete inspection of the platforms in useful time is crucial. Therefore, multiple agents can prove to be a cost-effective solution. This work proposes a trajectory planning algorithm, based on the Ant Colony metaheuristic, capable of optimizing the number of Autonomous Surface Vehicles (ASVs) to be used, and their corresponding route. Experiments conducted on a simulated environment, representative of the real scenario, proves this approach to be successful in planning a trajectory that is able to select the appropriate number of agents and the trajectory of each agent that avoids collisions and at the same time guarantees the full observation of the offshore structures.
2021
Autores
Pereira, MI; Leite, PN; Pinto, AM;
Publicação
MARINE TECHNOLOGY SOCIETY JOURNAL
Abstract
The maritime industry has been following the paradigm shift toward the automation of typically intelligent procedures, with research regarding autonomous surface vehicles (ASVs) having seen an upward trend in recent years. However, this type of vehicle cannot be employed on a full scale until a few challenges are solved. For example, the docking process of an ASV is still a demanding task that currently requires human intervention. This research work proposes a volumetric convolutional neural network (vCNN) for the detection of docking structures from 3-D data, developed according to a balance between precision and speed. Another contribution of this article is a set of synthetically generated data regarding the context of docking structures. The dataset is composed of LiDAR point clouds, stereo images, GPS, and Inertial Measurement Unit (IMU) information. Several robustness tests carried out with different levels of Gaussian noise demonstrated an average accuracy of 93.34% and a deviation of 5.46% for the worst case. Furthermore, the system was fine-tuned and evaluated in a real commercial harbor, achieving an accuracy of over 96%. The developed classifier is able to detect different types of structures and works faster than other state-of-the-art methods that establish their performance in real environments.
2021
Autores
Pereira, MI; Claro, RM; Leite, PN; Pinto, AM;
Publicação
IEEE ACCESS
Abstract
The automation of typically intelligent and decision-making processes in the maritime industry leads to fewer accidents and more cost-effective operations. However, there are still lots of challenges to solve until fully autonomous systems can be employed. Artificial Intelligence (AI) has played a major role in this paradigm shift and shows great potential for solving some of these challenges, such as the docking process of an autonomous vessel. This work proposes a lightweight volumetric Convolutional Neural Network (vCNN) capable of recognizing different docking-based structures using 3D data in real-time. A synthetic-to-real domain adaptation approach is also proposed to accelerate the training process of the vCNN. This approach makes it possible to greatly decrease the cost of data acquisition and the need for advanced computational resources. Extensive experiments demonstrate an accuracy of over 90% in the recognition of different docking structures, using low resolution sensors. The inference time of the system was about 120ms on average. Results obtained using a real Autonomous Surface Vehicle (ASV) demonstrated that the vCNN trained with the synthetic-to-real domain adaptation approach is suitable for maritime mobile robots. This novel AI recognition method, combined with the utilization of 3D data, contributes to an increased robustness of the docking process regarding environmental constraints, such as rain and fog, as well as insufficient lighting in nighttime operations.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.