2024
Autores
Brito, C; Ferreira, P; Paulo, J;
Publicação
Abstract
2024
Autores
Ribeiro, R; Moraes, A; Moreno, M; Ferreira, PG;
Publicação
MACHINE LEARNING
Abstract
Aging involves complex biological processes leading to the decline of living organisms. As population lifespan increases worldwide, the importance of identifying factors underlying healthy aging has become critical. Integration of multi-modal datasets is a powerful approach for the analysis of complex biological systems, with the potential to uncover novel aging biomarkers. In this study, we leveraged publicly available epigenomic, transcriptomic and telomere length data along with histological images from the Genotype-Tissue Expression project to build tissue-specific regression models for age prediction. Using data from two tissues, lung and ovary, we aimed to compare model performance across data modalities, as well as to assess the improvement resulting from integrating multiple data types. Our results demostrate that methylation outperformed the other data modalities, with a mean absolute error of 3.36 and 4.36 in the test sets for lung and ovary, respectively. These models achieved lower error rates when compared with established state-of-the-art tissue-agnostic methylation models, emphasizing the importance of a tissue-specific approach. Additionally, this work has shown how the application of Hierarchical Image Pyramid Transformers for feature extraction significantly enhances age modeling using histological images. Finally, we evaluated the benefits of integrating multiple data modalities into a single model. Combining methylation data with other data modalities only marginally improved performance likely due to the limited number of available samples. Combining gene expression with histological features yielded more accurate age predictions compared with the individual performance of these data types. Given these results, this study shows how machine learning applications can be extended to/in multi-modal aging research. Code used is available at https://github.com/zroger49/multi_modal_age_prediction.
2024
Autores
Ramirez, JM; Ribeiro, R; Soldatkina, O; Moraes, A; García-Pérez, R; Ferreira, PG; Melé, M;
Publicação
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.