Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Pedro Gabriel Ferreira

2017

Genetic effects on gene expression across human tissues

Autores
Aguet, F; Brown, AA; Castel, SE; Davis, JR; He, Y; Jo, B; Mohammadi, P; Park, Y; Parsana, P; Segre, AV; Strober, BJ; Zappala, Z; Cummings, BB; Gelfand, ET; Hadley, K; Huang, KH; Lek, M; Li, X; Nedzel, JL; Nguyen, DY; Noble, MS; Sullivan, TJ; Tukiainen, T; MacArthur, DG; Getz, G; Management, NP; Addington, A; Guan, P; Koester, S; Little, AR; Lockhart, NC; Moore, HM; Rao, A; Struewing, JP; Volpi, S; Collection, B; Brigham, LE; Hasz, R; Hunter, M; Johns, C; Johnson, M; Kopen, G; Leinweber, WF; Lonsdale, JT; McDonald, A; Mestichelli, B; Myer, K; Roe, B; Salvatore, M; Shad, S; Thomas, JA; Walters, G; Washington, M; Wheeler, J; Bridge, J; Foster, BA; Gillard, BM; Karasik, E; Kumar, R; Miklos, M; Moser, MT; Jewell, SD; Montroy, RG; Rohrer, DC; Valley, D; Mash, DC; Davis, DA; Sobin, L; Barcus, ME; Branton, PA; Grp, EMW; Abell, NS; Balliu, B; Delaneau, O; Fresard, L; Gamazon, ER; Garrido Martin, D; Gewirtz, ADH; Gliner, G; Gloudemans, MJ; Han, B; He, AZ; Hormozdiari, F; Li, X; Liu, B; Kang, EY; McDowell, IC; Ongen, H; Palowitch, JJ; Peterson, CB; Quon, G; Ripke, S; Saha, A; Shabalin, AA; Shimko, TC; Sul, JH; Teran, NA; Tsang, EK; Zhang, H; Zhou, YH; Bustamante, CD; Cox, NJ; Guigo, R; Kellis, M; McCarthy, MI; Conrad, DF; Eskin, E; Li, G; Nobel, AB; Sabatti, C; Stranger, BE; Wen, X; Wright, FA; Ardlie, KG; Dermitzakis, ET; Lappalainen, T; Battle, A; Brown, CD; Engelhardt, BE; Montgomery, SB; Aguet, F; Ardlie, KG; Cummings, BB; Gelfand, ET; Getz, G; Hadley, K; Handsaker, RE; Huang, KH; Kashin, S; Karczewski, KJ; Lek, M; Li, X; MacArthur, DG; Nedzel, JL; Nguyen, DT; Noble, MS; Segre, AV; Trowbridge, CA; Tukiainen, T; Abell, NS; Balliu, B; Barshir, R; Basha, O; Battle, A; Bogu, GK; Brown, A; Brown, CD; Castel, SE; Chen, LS; Chiang, C; Conrad, DF; Cox, NJ; Damani, FN; Davis, JR; Delaneau, O; Dermitzakis, ET; Engelhardt, BE; Eskin, E; Ferreira, PG; Fresard, L; Gamazon, ER; Garrido Martin, D; Gewirtz, ADH; Gliner, G; Gloudemans, MJ; Guigo, R; Hall, IM; Han, B; He, Y; Hormozdiari, F; Howald, C; Im, HK; Jo, B; Kang, EY; Kim, Y; Kim Hellmuth, S; Lappalainen, T; Li, G; Li, X; Liu, B; Mangul, S; McCarthy, MI; McDowell, IC; Mohammadi, P; Monlong, J; Montgomery, SB; Munoz Aguirre, M; Ndungu, AW; Nicolae, DL; Nobel, AB; Oliva, M; Ongen, H; Palowitch, JJ; Panousis, N; Papasaikas, P; Park, Y; Parsana, P; Payne, AJ; Peterson, CB; Quan, J; Reverter, F; Sabatti, C; Saha, A; Sammeth, M; Scott, AJ; Shabalin, AA; Sodaei, R; Stephens, M; Stranger, BE; Strober, BJ; Sul, JH; Tsang, EK; Urbut, S; De Bunt, MV; Wang, G; Wen, X; Wright, FA; Xi, HS; Yeger Lotem, E; Zappala, Z; Zaugg, JB; Zhou, YH; Akey, JM; Bates, D; Chan, J; Chen, LS; Claussnitzer, M; Demanelis, K; Diegel, M; Doherty, JA; Feinberg, AP; Fernando, MS; Halow, J; Hansen, KD; Haugen, E; Hickey, PF; Hou, L; Jasmine, F; Jian, R; Jiang, L; Johnson, A; Kaul, R; Kellis, M; Kibriya, MG; Lee, K; Li, JB; Li, Q; Li, X; Lin, J; Lin, S; Linder, S; Linke, C; Liu, Y; Maurano, MT; Molinie, B; Montgomery, SB; Nelson, J; Neri, FJ; Oliva, M; Park, Y; Pierce, BL; Rinaldi, NJ; Rizzardi, LF; Sandstrom, R; Skol, A; Smith, KS; Snyder, MP; Stamatoyannopoulos, J; Stranger, BE; Tang, H; Tsang, EK; Wang, L; Wang, M; Van Wittenberghe, N; Wu, F; Zhang, R; Fund, NC; Nierras, CR; Nci, N; Branton, PA; Carithers, LJ; Guan, P; Moore, HM; Rao, A; Vaught, JB; Nhgri, N; Gould, SE; Lockart, NC; Martin, C; Struewing, JP; Volpi, S; Nimh, N; Addington, AM; Koester, SE; Nida, N; Little, AR; Brigham, LE; Hasz, R; Hunter, M; Johns, C; Johnson, M; Kopen, G; Leinweber, WF; Lonsdale, JT; McDonald, A; Mestichelli, B; Myer, K; Roe, B; Salvatore, M; Shad, S; Thomas, JA; Walters, G; Washington, M; Wheeler, J; Bridge, J; Foster, BA; Gillard, BM; Karasik, E; Kumar, R; Miklos, M; Moser, MT; Jewell, SD; Montroy, RG; Rohrer, DC; Valley, DR; Davis, DA; Mash, DC; Undale, AH; Smith, AM; Tabor, DE; Roche, NV; McLean, JA; Vatanian, N; Robinson, KL; Sobin, L; Barcus, ME; Valentino, KM; Qi, L; Hunter, S; Hariharan, P; Singh, S; Um, KS; Matose, T; Tomaszewski, MM; Study, E; Barker, LK; Mosavel, M; Siminoff, LA; Traino, HM; Flicek, P; Juettemann, T; Ruffier, M; Sheppard, D; Taylor, K; Trevanion, SJ; Zerbino, DR; Craft, B; Goldman, M; Haeussler, M; Kent, WJ; Lee, CM; Paten, B; Rosenbloom, KR; Vivian, J; Zhu, J;

Publicação
NATURE

Abstract
Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease.

2017

The impact of rare variation on gene expression across tissues

Autores
Li, X; Kim, Y; Tsang, EK; Davis, JR; Damani, FN; Chiang, C; Hess, GT; Zappala, Z; Strober, BJ; Scott, AJ; Li, A; Ganna, A; Bassik, MC; Merker, JD; Aguet, F; Ardlie, KG; Cummings, BB; Gelfand, ET; Getz, G; Hadley, K; Handsaker, RE; Huang, KH; Kashin, S; Karczewski, KJ; Lek, M; Li, X; MacArthur, DG; Nedzel, JL; Nguyen, DT; Noble, MS; Segrè, AV; Trowbridge, CA; Tukiainen, T; Abell, NS; Balliu, B; Barshir, R; Basha, O; Battle, A; Bogu, GK; Brown, A; Brown, CD; Castel, SE; Chen, LS; Chiang, C; Conrad, DF; Cox, NJ; Damani, FN; Davis, JR; Delaneau, O; Dermitzakis, ET; Engelhardt, BE; Eskin, E; Ferreira, PG; Frésard, L; Gamazon, ER; Garrido-Martín, D; Gewirtz, AD; Gliner, G; Gloudemans, MJ; Guigo, R; Hall, IM; Han, B; He, Y; Hormozdiari, F; Howald, C; Kyung Im, H; Jo, B; Yong Kang, E; Kim, Y; Kim-Hellmuth, S; Lappalainen, T; Li, G; Li, X; Liu, B; Mangul, S; McCarthy, MI; McDowell, IC; Mohammadi, P; Monlong, J; Montgomery, SB; Muñoz-Aguirre, M; Ndungu, AW; Nicolae, DL; Nobel, AB; Oliva, M; Ongen, H; Palowitch, JJ; Panousis, N; Papasaikas, P; Park, Y; Parsana, P; Payne, AJ; Peterson, CB; Quan, J; Reverter, F; Sabatti, C; Saha, A; Sammeth, M; Scott, AJ; Shabalin, AA; Sodaei, R; Stephens, M; Stranger, BE; Strober, BJ; Sul, JH; Tsang, EK; Urbut, S; van de Bunt, M; Wang, G; Wen, X; Wright, FA; Xi, HS; Yeger-Lotem, E; Zappala, Z; Zaugg, JB; Zhou, Y; Akey, JM; Bates, D; Chan, J; Chen, LS; Claussnitzer, M; Demanelis, K; Diegel, M; Doherty, JA; Feinberg, AP; Fernando, MS; Halow, J; Hansen, KD; Haugen, E; Hickey, PF; Hou, L; Jasmine, F; Jian, R; Jiang, L; Johnson, A; Kaul, R; Kellis, M; Kibriya, MG; Lee, K; Billy Li, J; Li, Q; Li, X; Lin, J; Lin, S; Linder, S; Linke, C; Liu, Y; Maurano, MT; Molinie, B; Montgomery, SB; Nelson, J; Neri, FJ; Oliva, M; Park, Y; Pierce, BL; Rinaldi, NJ; Rizzardi, LF; Sandstrom, R; Skol, A; Smith, KS; Snyder, MP; Stamatoyannopoulos, J; Stranger, BE; Tang, H; Tsang, EK; Wang, L; Wang, M; Van Wittenberghe, N; Wu, F; Zhang, R; Nierras, CR; Branton, PA; Carithers, LJ; Guan, P; Moore, HM; Rao, A; Vaught, JB; Gould, SE; Lockart, NC; Martin, C; Struewing, JP; Volpi, S; Addington, AM; Koester, SE; Little, AR; Brigham, LE; Hasz, R; Hunter, M; Johns, C; Johnson, M; Kopen, G; Leinweber, WF; Lonsdale, JT; McDonald, A; Mestichelli, B; Myer, K; Roe, B; Salvatore, M; Shad, S; Thomas, JA; Walters, G; Washington, M; Wheeler, J; Bridge, J; Foster, BA; Gillard, BM; Karasik, E; Kumar, R; Miklos, M; Moser, MT; Jewell, SD; Montroy, RG; Rohrer, DC; Valley, DR; Davis, DA; Mash, DC; Undale, AH; Smith, AM; Tabor, DE; Roche, NV; McLean, JA; Vatanian, N; Robinson, KL; Sobin, L; Barcus, ME; Valentino, KM; Qi, L; Hunter, S; Hariharan, P; Singh, S; Um, KS; Matose, T; Tomaszewski, MM; Barker, LK; Mosavel, M; Siminoff, LA; Traino, HM; Flicek, P; Juettemann, T; Ruffier, M; Sheppard, D; Taylor, K; Trevanion, SJ; Zerbino, DR; Craft, B; Goldman, M; Haeussler, M; Kent, WJ; Lee, CM; Paten, B; Rosenbloom, KR; Vivian, J; Zhu, J; Hall, IM; Battle, A; Montgomery, SB;

Publicação
Nature

Abstract
Rare genetic variants are abundant in humans and are expected to contribute to individual disease risk1-4. While genetic association studies have successfully identified common genetic variants associated with susceptibility, these studies are not practical for identifying rare variants1,5. Efforts to distinguish pathogenic variants from benign rare variants have leveraged the genetic code to identify deleterious protein-coding alleles1,6,7, but no analogous code exists for non-coding variants. Therefore, ascertaining which rare variants have phenotypic effects remains a major challenge. Rare non-coding variants have been associated with extreme gene expression in studies using single tissues8-11, but their effects across tissues are unknown. Here we identify gene expression outliers, or individuals showing extreme expression levels for a particular gene, across 44 human tissues by using combined analyses of whole genomes and multi-tissue RNA-sequencing data from the Genotype-Tissue Expression (GTEx) project v6p release12. We find that 58% of underexpression and 28% of overexpression outliers have nearby conserved rare variants compared to 8% of non-outliers. Additionally, we developed RIVER (RNA-informed variant effect on regulation), a Bayesian statistical model that incorporates expression data to predict a regulatory effect for rare variants with higher accuracy than models using genomic annotations alone. Overall, we demonstrate that rare variants contribute to large gene expression changes across tissues and provide an integrative method for interpretation of rare variants in individual genomes.

2017

Landscape of X chromosome inactivation across human tissues

Autores
Tukiainen, T; Villani, A; Yen, A; Rivas, MA; Marshall, JL; Satija, R; Aguirre, M; Gauthier, L; Fleharty, M; Kirby, A; Cummings, BB; Castel, SE; Karczewski, KJ; Aguet, F; Byrnes, A; Aguet, F; Ardlie, KG; Cummings, BB; Gelfand, ET; Getz, G; Hadley, K; Handsaker, RE; Huang, KH; Kashin, S; Karczewski, KJ; Lek, M; Li, X; MacArthur, DG; Nedzel, JL; Nguyen, DT; Noble, MS; Segrè, AV; Trowbridge, CA; Tukiainen, T; Abell, NS; Balliu, B; Barshir, R; Basha, O; Battle, A; Bogu, GK; Brown, A; Brown, CD; Castel, SE; Chen, LS; Chiang, C; Conrad, DF; Cox, NJ; Damani, FN; Davis, JR; Delaneau, O; Dermitzakis, ET; Engelhardt, BE; Eskin, E; Ferreira, PG; Frésard, L; Gamazon, ER; Garrido-Martín, D; Gewirtz, ADH; Gliner, G; Gloudemans, MJ; Guigo, R; Hall, IM; Han, B; He, Y; Hormozdiari, F; Howald, C; Kyung Im, H; Jo, B; Yong Kang, E; Kim, Y; Kim-Hellmuth, S; Lappalainen, T; Li, G; Li, X; Liu, B; Mangul, S; McCarthy, MI; McDowell, IC; Mohammadi, P; Monlong, J; Montgomery, SB; Muñoz-Aguirre, M; Ndungu, AW; Nicolae, DL; Nobel, AB; Oliva, M; Ongen, H; Palowitch, JJ; Panousis, N; Papasaikas, P; Park, Y; Parsana, P; Payne, AJ; Peterson, CB; Quan, J; Reverter, F; Sabatti, C; Saha, A; Sammeth, M; Scott, AJ; Shabalin, AA; Sodaei, R; Stephens, M; Stranger, BE; Strober, BJ; Sul, JH; Tsang, EK; Urbut, S; van de Bunt, M; Wang, G; Wen, X; Wright, FA; Xi, HS; Yeger-Lotem, E; Zappala, Z; Zaugg, JB; Zhou, Y; Akey, JM; Bates, D; Chan, J; Chen, LS; Claussnitzer, M; Demanelis, K; Diegel, M; Doherty, JA; Feinberg, AP; Fernando, MS; Halow, J; Hansen, KD; Haugen, E; Hickey, PF; Hou, L; Jasmine, F; Jian, R; Jiang, L; Johnson, A; Kaul, R; Kellis, M; Kibriya, MG; Lee, K; Li, JB; Li, Q; Li, X; Lin, J; Lin, S; Linder, S; Linke, C; Liu, Y; Maurano, MT; Molinie, B; Montgomery, SB; Nelson, J; Neri, FJ; Oliva, M; Park, Y; Pierce, BL; Rinaldi, NJ; Rizzardi, LF; Sandstrom, R; Skol, A; Smith, KS; Snyder, MP; Stamatoyannopoulos, J; Stranger, BE; Tang, H; Tsang, EK; Wang, L; Wang, M; Van Wittenberghe, N; Wu, F; Zhang, R; Nierras, CR; Branton, PA; Carithers, LJ; Guan, P; Moore, HM; Rao, A; Vaught, JB; Gould, SE; Lockart, NC; Martin, C; Struewing, JP; Volpi, S; Addington, AM; Koester, SE; Little, AR; Brigham, LE; Hasz, R; Hunter, M; Johns, C; Johnson, M; Kopen, G; Leinweber, WF; Lonsdale, JT; McDonald, A; Mestichelli, B; Myer, K; Roe, B; Salvatore, M; Shad, S; Thomas, JA; Walters, G; Washington, M; Wheeler, J; Bridge, J; Foster, BA; Gillard, BM; Karasik, E; Kumar, R; Miklos, M; Moser, MT; Jewell, SD; Montroy, RG; Rohrer, DC; Valley, DR; Davis, DA; Mash, DC; Undale, AH; Smith, AM; Tabor, DE; Roche, NV; McLean, JA; Vatanian, N; Robinson, KL; Sobin, L; Barcus, ME; Valentino, KM; Qi, L; Hunter, S; Hariharan, P; Singh, S; Um, KS; Matose, T; Tomaszewski, MM; Barker, LK; Mosavel, M; Siminoff, LA; Traino, HM; Flicek, P; Juettemann, T; Ruffier, M; Sheppard, D; Taylor, K; Trevanion, SJ; Zerbino, DR; Craft, B; Goldman, M; Haeussler, M; Kent, WJ; Lee, CM; Paten, B; Rosenbloom, KR; Vivian, J; Zhu, J; Lappalainen, T; Regev, A; Ardlie, KG; Hacohen, N; MacArthur, DG;

Publicação
Nature

Abstract
X chromosome inactivation (XCI) silences transcription from one of the two X chromosomes in female mammalian cells to balance expression dosage between XX females and XY males. XCI is, however, incomplete in humans: up to one-third of X-chromosomal genes are expressed from both the active and inactive X chromosomes (Xa and Xi, respectively) in female cells, with the degree of 'escape' from inactivation varying between genes and individuals1,2. The extent to which XCI is shared between cells and tissues remains poorly characterized3,4, as does the degree to which incomplete XCI manifests as detectable sex differences in gene expression5 and phenotypic traits6. Here we describe a systematic survey of XCI, integrating over 5,500 transcriptomes from 449 individuals spanning 29 tissues from GTEx (v6p release) and 940 single-cell transcriptomes, combined with genomic sequence data. We show that XCI at 683 X-chromosomal genes is generally uniform across human tissues, but identify examples of heterogeneity between tissues, individuals and cells. We show that incomplete XCI affects at least 23% of X-chromosomal genes, identify seven genes that escape XCI with support from multiple lines of evidence and demonstrate that escape from XCI results in sex biases in gene expression, establishing incomplete XCI as a mechanism that is likely to introduce phenotypic diversity6,7. Overall, this updated catalogue of XCI across human tissues helps to increase our understanding of the extent and impact of the incompleteness in the maintenance of XCI.

2017

Dynamic landscape and regulation of RNA editing in mammals

Autores
Tan, MH; Li, Q; Shanmugam, R; Piskol, R; Kohler, J; Young, AN; Liu, KI; Zhang, R; Ramaswami, G; Ariyoshi, K; Gupte, A; Keegan, LP; George, CX; Ramu, A; Huang, N; Pollina, EA; Leeman, DS; Rustighi, A; Goh, YPS; Aguet, F; Ardlie, KG; Cummings, BB; Gelfand, ET; Getz, G; Hadley, K; Handsaker, RE; Huang, KH; Kashin, S; Karczewski, KJ; Lek, M; Li, X; MacArthur, DG; Nedzel, JL; Nguyen, DT; Noble, MS; Segrè, AV; Trowbridge, CA; Tukiainen, T; Abell, NS; Balliu, B; Barshir, R; Basha, O; Battle, A; Bogu, GK; Brown, A; Brown, CD; Castel, SE; Chen, LS; Chiang, C; Conrad, DF; Cox, NJ; Damani, FN; Davis, JR; Delaneau, O; Dermitzakis, ET; Engelhardt, BE; Eskin, E; Ferreira, PG; Frésard, L; Gamazon, ER; Garrido-Martín, D; Gewirtz, ADH; Gliner, G; Gloudemans, MJ; Guigo, R; Hall, IM; Han, B; He, Y; Hormozdiari, F; Howald, C; Kyung Im, H; Jo, B; Yong Kang, E; Kim, Y; Kim-Hellmuth, S; Lappalainen, T; Li, G; Li, X; Liu, B; Mangul, S; McCarthy, MI; McDowell, IC; Mohammadi, P; Monlong, J; Montgomery, SB; Muñoz-Aguirre, M; Ndungu, AW; Nicolae, DL; Nobel, AB; Oliva, M; Ongen, H; Palowitch, JJ; Panousis, N; Papasaikas, P; Park, Y; Parsana, P; Payne, AJ; Peterson, CB; Quan, J; Reverter, F; Sabatti, C; Saha, A; Sammeth, M; Scott, AJ; Shabalin, AA; Sodaei, R; Stephens, M; Stranger, BE; Strober, BJ; Sul, JH; Tsang, EK; Urbut, S; van de Bunt, M; Wang, G; Wen, X; Wright, FA; Xi, HS; Yeger-Lotem, E; Zappala, Z; Zaugg, JB; Zhou, Y; Akey, JM; Bates, D; Chan, J; Chen, LS; Claussnitzer, M; Demanelis, K; Diegel, M; Doherty, JA; Feinberg, AP; Fernando, MS; Halow, J; Hansen, KD; Haugen, E; Hickey, PF; Hou, L; Jasmine, F; Jian, R; Jiang, L; Johnson, A; Kaul, R; Kellis, M; Kibriya, MG; Lee, K; Li, JB; Li, Q; Li, X; Lin, J; Lin, S; Linder, S; Linke, C; Liu, Y; Maurano, MT; Molinie, B; Montgomery, SB; Nelson, J; Neri, FJ; Oliva, M; Park, Y; Pierce, BL; Rinaldi, NJ; Rizzardi, LF; Sandstrom, R; Skol, A; Smith, KS; Snyder, MP; Stamatoyannopoulos, J; Stranger, BE; Tang, H; Tsang, EK; Wang, L; Wang, M; Van Wittenberghe, N; Wu, F; Zhang, R; Nierras, CR; Branton, PA; Carithers, LJ; Guan, P; Moore, HM; Rao, A; Vaught, JB; Gould, SE; Lockart, NC; Martin, C; Struewing, JP; Volpi, S; Addington, AM; Koester, SE; Little, AR; Brigham, LE; Hasz, R; Hunter, M; Johns, C; Johnson, M; Kopen, G; Leinweber, WF; Lonsdale, JT; McDonald, A; Mestichelli, B; Myer, K; Roe, B; Salvatore, M; Shad, S; Thomas, JA; Walters, G; Washington, M; Wheeler, J; Bridge, J; Foster, BA; Gillard, BM; Karasik, E; Kumar, R; Miklos, M; Moser, MT; Jewell, SD; Montroy, RG; Rohrer, DC; Valley, DR; Davis, DA; Mash, DC; Undale, AH; Smith, AM; Tabor, DE; Roche, NV; McLean, JA; Vatanian, N; Robinson, KL; Sobin, L; Barcus, ME; Valentino, KM; Qi, L; Hunter, S; Hariharan, P; Singh, S; Um, KS; Matose, T; Tomaszewski, MM; Barker, LK; Mosavel, M; Siminoff, LA; Traino, HM; Flicek, P; Juettemann, T; Ruffier, M; Sheppard, D; Taylor, K; Trevanion, SJ; Zerbino, DR; Craft, B; Goldman, M; Haeussler, M; Kent, WJ; Lee, CM; Paten, B; Rosenbloom, KR; Vivian, J; Zhu, J; Chawla, A; Del Sal, G; Peltz, G; Brunet, A; Conrad, DF; Samuel, CE; O’Connell, MA; Walkley, CR; Nishikura, K; Li, JB;

Publicação
Nature

Abstract
Adenosine-to-inosine (A-to-I) RNA editing is a conserved posttranscriptional mechanism mediated by ADAR enzymes that diversifies the transcriptome by altering selected nucleotides in RNA molecules1. Although many editing sites have recently been discovered2-7, the extent to which most sites are edited and how the editing is regulated in different biological contexts are not fully understood8-10. Here we report dynamic spatiotemporal patterns and new regulators of RNA editing, discovered through an extensive profiling of A-to-I RNA editing in 8,551 human samples (representing 53 body sites from 552 individuals) from the Genotype-Tissue Expression (GTEx) project and in hundreds of other primate and mouse samples. We show that editing levels in non-repetitive coding regions vary more between tissues than editing levels in repetitive regions. Globally, ADAR1 is the primary editor of repetitive sites and ADAR2 is the primary editor of nonrepetitive coding sites, whereas the catalytically inactive ADAR3 predominantly acts as an inhibitor of editing. Cross-species analysis of RNA editing in several tissues revealed that species, rather than tissue type, is the primary determinant of editing levels, suggesting stronger cis-directed regulation of RNA editing for most sites, although the small set of conserved coding sites is under stronger trans-regulation. In addition, we curated an extensive set of ADAR1 and ADAR2 targets and showed that many editing sites display distinct tissue-specific regulation by the ADAR enzymes in vivo. Further analysis of the GTEx data revealed several potential regulators of editing, such as AIMP2, which reduces editing in muscles by enhancing the degradation of the ADAR proteins. Collectively, our work provides insights into the complex cis-and trans-regulation of A-to-I editing.

2015

Biased allelic expression in human primary fibroblast single cells

Autores
Borel, C; Ferreira, PG; Santoni, F; Delaneau, O; Fort, A; Popadin, KY; Garieri, M; Falconnet, E; Ribaux, P; Guipponi, M; Padioleau, I; Carninci, P; Dermitzakis, ET; Antonarakis, SE;

Publicação
American Journal of Human Genetics

Abstract
The study of gene expression in mammalian single cells via genomic technologies now provides the possibility to investigate the patterns of allelic gene expression. We used single-cell RNA sequencing to detect the allele-specific mRNA level in 203 single human primary fibroblasts over 133,633 unique heterozygous single-nucleotide variants (hetSNVs). We observed that at the snapshot of analyses, each cell contained mostly transcripts from one allele from the majority of genes; indeed, 76.4% of the hetSNVs displayed stochastic monoallelic expression in single cells. Remarkably, adjacent hetSNVs exhibited a haplotype-consistent allelic ratio; in contrast, distant sites located in two different genes were independent of the haplotype structure. Moreover, the allele-specific expression in single cells correlated with the abundance of the cellular transcript. We observed that genes expressing both alleles in the majority of the single cells at a given time point were rare and enriched with highly expressed genes. The relative abundance of each allele in a cell was controlled by some regulatory mechanisms given that we observed related single-cell allelic profiles according to genes. Overall, these results have direct implications in cellular phenotypic variability. © 2015 The American Society of Human Genetics.

2014

Putative cis-regulatory drivers in colorectal cancer

Autores
Ongen, H; Andersen, CL; Bramsen, JB; Oster, B; Rasmussen, MH; Ferreira, PG; Sandoval, J; Vidal, E; Whiffin, N; Planchon, A; Padioleau, I; Bielser, D; Romano, L; Tomlinson, I; Houlston, RS; Esteller, M; Orntoft, TF; Dermitzakis, ET;

Publicação
Nature

Abstract
The cis-regulatory effects responsible for cancer development have not been as extensively studied as the perturbations of the protein coding genome in tumorigenesis. To better characterize colorectal cancer (CRC) development we conducted an RNA-sequencing experiment of 103 matched tumour and normal colon mucosa samples from Danish CRC patients, 90 of which were germline-genotyped. By investigating allele-specific expression (ASE) we show that the germline genotypes remain important determinants of allelic gene expression in tumours. Using the changes in ASE in matched pairs of samples we discover 71 genes with excess of somatic cis-regulatory effects in CRC, suggesting a cancer driver role. We correlate genotypes and gene expression to identify expression quantitative trait loci (eQTLs) and find 1,693 and 948 eQTLs in normal samples and tumours, respectively. We estimate that 36% of the tumour eQTLs are exclusive to CRC and show that this specificity is partially driven by increased expression of specific transcription factors and changes in methylation patterns. We show that tumour-specific eQTLs are more enriched for low CRC genome-wide association study (GWAS) P values than shared eQTLs, which suggests that some of the GWAS variants are tumour specific regulatory variants. Importantly, tumour-specific eQTL genes also accumulate more somatic mutations when compared to the shared eQTL genes, raising the possibility that they constitute germline-derived cancer regulatory drivers. Collectively the integration of genome and the transcriptome reveals a substantial number of putative somatic and germline cis-regulatory cancer changes that may have a role in tumorigenesis.

  • 9
  • 13