Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Ana Filipa Sequeira

2014

Iris liveness detection methods in the mobile biometrics scenario

Autores
Sequeira, AF; Murari, J; Cardoso, JS;

Publicação
PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN)

Abstract
Biometric systems based on iris are vulnerable to direct attacks consisting on the presentation of a fake iris to the sensor (a printed or a contact lenses iris image, among others). The mobile biometrics scenario stresses the importance of assessing the security issues. The application of countermeasures against this type of attacking scheme is the problem addressed in the present paper. Widening a previous work, several state-of-the-art iris liveness detection methods were implemented and adapted to a less-constrained scenario. The proposed method combines a feature selection step prior to the use of state-of-the-art classifiers to perform the classification based upon the "best features". Five well known existing databases for iris liveness purposes (Biosec, Clarkson, NotreDame and Warsaw) and a recently published database, MobBIOfake, with real and fake images captured in the mobile scenario were tested. The results obtained suggest that the automated segmentation step does not degrade significantly the results.

2015

Fingerprint Liveness Detection in the Presence of Capable Intruders

Autores
Sequeira, AF; Cardoso, JS;

Publicação
SENSORS

Abstract
Fingerprint liveness detection methods have been developed as an attempt to overcome the vulnerability of fingerprint biometric systems to spoofing attacks. Traditional approaches have been quite optimistic about the behavior of the intruder assuming the use of a previously known material. This assumption has led to the use of supervised techniques to estimate the performance of the methods, using both live and spoof samples to train the predictive models and evaluate each type of fake samples individually. Additionally, the background was often included in the sample representation, completely distorting the decision process. Therefore, we propose that an automatic segmentation step should be performed to isolate the fingerprint from the background and truly decide on the liveness of the fingerprint and not on the characteristics of the background. Also, we argue that one cannot aim to model the fake samples completely since the material used by the intruder is unknown beforehand. We approach the design by modeling the distribution of the live samples and predicting as fake the samples very unlikely according to that model. Our experiments compare the performance of the supervised approaches with the semi-supervised ones that rely solely on the live samples. The results obtained differ from the ones obtained by the more standard approaches which reinforces our conviction that the results in the literature are misleadingly estimating the true vulnerability of the biometric system.

2014

MobBIO: A Multimodal Database Captured with a Portable Handheld Device

Autores
Sequeira, AF; Monteiro, JC; Rebelo, A; Oliveira, HP;

Publicação
PROCEEDINGS OF THE 2014 9TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, THEORY AND APPLICATIONS (VISAPP 2014), VOL 3

Abstract
Biometrics represents a return to a natural way of identification: testing someone by what (s) he is, instead of relying on something (s) he owns or knows seems likely to be the way forward. Biometric systems that include multiple sources of information are known as multimodal. Such systems are generally regarded as an alternative to fight a variety of problems all unimodal systems stumble upon. One of the main challenges found in the development of biometric recognition systems is the shortage of publicly available databases acquired under real unconstrained working conditions. Motivated by such need the MobBIO database was created using an Asus EeePad Transformer tablet, with mobile biometric systems in mind. The proposed database is composed by three modalities: iris, face and voice.

2018

Robust Clustering-based Segmentation Methods for Fingerprint Recognition

Autores
Ferreira, PM; Sequeira, AF; Cardoso, JS; Rebelo, A;

Publicação
2018 INTERNATIONAL CONFERENCE OF THE BIOMETRICS SPECIAL INTEREST GROUP (BIOSIG)

Abstract
Fingerprint recognition has been widely studied for more than 45 years and yet it remains an intriguing pattern recognition problem. This paper focuses on the foreground mask estimation which is crucial for the accuracy of a fingerprint recognition system. The method consists of a robust cluster-based fingerprint segmentation framework incorporating an additional step to deal with pixels that were rejected as foreground in a decision considered not reliable enough. These rejected pixels are then further analysed for a more accurate classification. The procedure falls in the paradigm of classification with reject option- a viable option in several real world applications of machine learning and pattern recognition, where the cost of misclassifying observations is high. The present work expands a previous method based on the fuzzy C-means clustering with two variations regarding: i) the filters used; and ii) the clustering method for pixel classification as foreground/background. Experimental results demonstrate improved results on FVC datasets comparing with state-of-the-art methods even including methodologies based on deep learning architectures. © 2018 Gesellschaft fuer Informatik.

2019

Adversarial learning for a robust iris presentation attack detection method against unseen attack presentations

Autores
Ferreira, PM; Sequeira, AF; Pernes, D; Rebelo, A; Cardoso, JS;

Publicação
2019 INTERNATIONAL CONFERENCE OF THE BIOMETRICS SPECIAL INTEREST GROUP (BIOSIG 2019)

Abstract
Despite the high performance of current presentation attack detection (PAD) methods, the robustness to unseen attacks is still an under addressed challenge. This work approaches the problem by enforcing the learning of the bona fide presentations while making the model less dependent on the presentation attack instrument species (PAIS). The proposed model comprises an encoder, mapping from input features to latent representations, and two classifiers operating on these underlying representations: (i) the task-classifier, for predicting the class labels (as bona fide or attack); and (ii) the species-classifier, for predicting the PAIS. In the learning stage, the encoder is trained to help the task-classifier while trying to fool the species-classifier. Plus, an additional training objective enforcing the similarity of the latent distributions of different species is added leading to a 'PAIspecies'- independent model. The experimental results demonstrated that the proposed regularisation strategies equipped the neural network with increased PAD robustness. The adversarial model obtained better loss and accuracy as well as improved error rates in the detection of attack and bona fide presentations. © 2019 Gesellschaft fur Informatik (GI). All rights reserved.

2016

Cross-Eyed-Cross-spectral Iris/Periocular Recognition database and competition

Autores
Sequeira A.F.; Chen L.; Ferryman J.; Alonso-Fernandez F.; Bigun J.; Raja K.B.; Raghavendra R.; Busch C.; Wild P.;

Publicação
Lecture Notes in Informatics (LNI), Proceedings - Series of the Gesellschaft fur Informatik (GI)

Abstract
This work presents a novel dual-spectrum database containing both iris and periocular images synchronously captured from a distance and within a realistic indoor environment. This database was used in the 1st Cross-Spectrum Iris/Periocular Recognition Competition (Cross-Eyed 2016). This competition aimed at recording recent advances in cross-spectrum iris and periocular recognition. Six submissions were evaluated for crossspectrum periocular recognition, and three for iris recognition. The submitted algorithms are briefly introduced. Detailed results are reported in this paper, and comparison of the results is discussed.

  • 2
  • 8