2020
Autores
Galdi, C; Boyle, J; Chen, LL; Chiesa, V; Debiasi, L; Dugelay, JL; Ferryman, J; Grudzien, A; Kauba, C; Kirchgasser, S; Kowalski, M; Linortner, M; Maik, P; Michon, K; Patino, L; Prommegger, B; Sequeira, AF; Szklarski, L; Uhl, A;
Publicação
IET BIOMETRICS
Abstract
Pervasive and useR fOcused biomeTrics bordEr projeCT (PROTECT) is an EU project funded by the Horizon 2020 research and Innovation Programme. The main aim of PROTECT was to build an advanced biometric-based person identification system that works robustly across a range of border crossing types and that has strong user-centric features. This work presents the case study of the multibiometric verification system developed within PROTECT. The system has been developed to be suitable for different borders such as air, sea, and land borders. The system covers two use cases: the walk-through scenario, in which the traveller is on foot; the drive-through scenario, in which the traveller is in a vehicle. Each deployment includes a different set of biometric traits and this study illustrates how to evaluate such multibiometric system in accordance with international standards and, in particular, how to overcome practical problems that may be encountered when dealing with multibiometric evaluation, such as different score distributions and missing scores.
2020
Autores
Domingues, I; Sequeira, AF; Pinto, C; Rocha,;
Publicação
COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION
Abstract
2021
Autores
Boutros, F; Damer, N; Kolf, JN; Raja, K; Kirchbuchner, F; Ramachandra, R; Kuijper, A; Fang, PC; Zhang, C; Wang, F; Montero, D; Aginako, N; Sierra, B; Nieto, M; Erakin, ME; Demir, U; Ekenel, HK; Kataoka, A; Ichikawa, K; Kubo, S; Zhang, J; He, MJ; Han, D; Shan, SG; Grm, K; Struc, V; Seneviratne, S; Kasthuriarachchi, N; Rasnayaka, S; Neto, PC; Sequeira, AF; Pinto, JR; Saffari, M; Cardoso, JS;
Publicação
2021 INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB 2021)
Abstract
This paper presents a summary of the Masked Face Recognition Competitions (MFR) held within the 2021 International Joint Conference on Biometrics (IJCB 2021). The competition attracted a total of 10 participating teams with valid submissions. The affiliations of these teams are diverse and associated with academia and industry in nine different countries. These teams successfully submitted 18 valid solutions. The competition is designed to motivate solutions aiming at enhancing the face recognition accuracy of masked faces. Moreover, the competition considered the deployability of the proposed solutions by taking the compactness of the face recognition models into account. A private dataset representing a collaborative, multi-session, real masked, capture scenario is used to evaluate the submitted solutions. In comparison to one of the top-performing academic face recognition solutions, 10 out of the 18 submitted solutions did score higher masked face verification accuracy.
2021
Autores
Neto, PC; Boutros, F; Pinto, JR; Saffari, M; Damer, N; Sequeira, AF; Cardoso, JS;
Publicação
PROCEEDINGS OF THE 20TH INTERNATIONAL CONFERENCE OF THE BIOMETRICS SPECIAL INTEREST GROUP (BIOSIG 2021)
Abstract
The recent Covid-19 pandemic and the fact that wearing masks in public is now mandatory in several countries, created challenges in the use of face recognition systems (FRS). In this work, we address the challenge of masked face recognition (MFR) and focus on evaluating the verification performance in FRS when verifying masked vs unmasked faces compared to verifying only unmasked faces. We propose a methodology that combines the traditional triplet loss and the mean squared error (MSE) intending to improve the robustness of an MFR system in the masked-unmasked comparison mode. The results obtained by our proposed method show improvements in a detailed step-wise ablation study. The conducted study showed significant performance gains induced by our proposed training paradigm and modified triplet loss on two evaluation databases.
2021
Autores
Esteves, T; Pinto, JR; Ferreira, PM; Costa, PA; Rodrigues, LA; Antunes, I; Lopes, G; Gamito, P; Abrantes, AJ; Jorge, PM; Lourenco, A; Sequeira, AF; Cardoso, JS; Rebelo, A;
Publicação
IEEE ACCESS
Abstract
As technology and artificial intelligence conquer a place under the spotlight in the automotive world, driver drowsiness monitoring systems have sparked much interest as a way to increase safety and avoid sleepiness-related accidents. Such technologies, however, stumble upon the observation that each driver presents a distinct set of behavioral and physiological manifestations of drowsiness, thus rendering its objective assessment a non-trivial process. The AUTOMOTIVE project studied the application of signal processing and machine learning techniques for driver-specific drowsiness detection in smart vehicles, enabled by immersive driving simulators. More broadly, comprehensive research on biometrics using the electrocardiogram (ECG) and face enables the continuous learning of subject-specific models of drowsiness for more efficient monitoring. This paper aims to offer a holistic but comprehensive view of the research and development work conducted for the AUTOMOTIVE project across the various addressed topics and how it ultimately brings us closer to the target of improved driver drowsiness monitoring.
2021
Autores
Sequeira, AF; Gomez Barrero, M; Correia, PL;
Publicação
IET BIOMETRICS
Abstract
[No abstract available]
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.