Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Susana Novais

2021

Application of a Fiber Optic Refractometric Sensor to Measure the Concentration of Paracetamol in Crystallization Experiments

Autores
Soares, L; Cruz, P; Novais, S; Ferreira, A; Frazao, O; Silva, S;

Publicação
IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE

Abstract
A refractometric sensor was applied to measure in real-time the concentration of Active Pharmaceutical Ingredients (APIs) in crystallization experiments. Paracetamol was used as a model system due to the extensive literature available for this API. The refractometric sensor was fabricated by a simple and inexpensive method that consisted in splicing a short section of a multimode fiber to a single mode fiber. The compact geometry of this sensor, with an external diameter of just $125\ \mu\mathrm{m}$, allowed it to measure the concentration of paracetamol, both in a stirred tank crystallizer operating in batch and in an oscillatory flow crystallizer operating continuously. The proposed technique shows the potential to monitor the concentration of APIs in crystallizers of different sizes and geometries as an alternative to more expensive and complex analysis equipment.

2014

Cell-Free layer (CFL) measurements in complex geometries: Contractions and bifurcations

Autores
Novais, S; Pinho, D; Bento, D; Pinto, E; Yaginuma, T; Fernandes, CS; Garcia, V; Pereira, AI; Lima, J; Mujika, M; Dias, R; Arana, S; Lima, R;

Publicação
Lecture Notes in Computational Vision and Biomechanics

Abstract
In this chapter we discuss the cell-free layer (CFL) developed adjacent to the wall of microgeometries containing complex features representative of the microcirculation, such as contractions, expansions, bifurcations and confluences. The microchannels with the different geometries were made of polydimethylsiloxane (PDMS) and we use optical techniques to evaluate the cell-free layer for red blood cells (RBCs) suspensions with different hematocrit (Hct). The images are captured using a high-speed video microscopy system and the thickness of the cell-free layer was measured using both manual and automatic image analysis techniques. The results show that in in vitro microcirculation, the hematocrit and the geometrical configuration have a major impact on the CFL thickness. In particular, the thickness of the cell-free layer increases as the fluid flows through a contraction–expansion sequence and that this increase is enhanced for lower hematocrit. In contrast, the flow rates tested in these studies did not show a clear influence on the CFL thickness. © Springer Science+Business Media Dordrecht 2014.

2021

Characterization of an hollow core PCF for endoscopy applications: A proof concept

Autores
Marques J.; Novais S.; Silva S.; Frazao O.;

Publicação
2021 Telecoms Conference, ConfTELE 2021

Abstract
Two distinct optical fibers for endoscope-based configurations are demonstrated and studied in this work. The fibers used for the experiment consist of: a conventional singlemode fiber (SMF 28e) and a hollow core photonic crystal fiber (HC-PCF) based on silica. Two studies that allowed the characterization of these fibers, according to their optical output power and when subjected to curvature, were carried out. The intensity power profile was also analysed in relation to the propagation distance, transversal displacement and incidence angle. After this study it can be concluded that the most suitable solution for the endoscope is the HC-PCF fiber working as a transmission probe. For the proof of concept of the fiber-based endoscope, a cleaved multimode fiber (MMF) tip was used as a reception probe and its reflection efficiency was also analysed.

2022

The effect of frequency modulation on the FSR of a Fabry-Perot cavity using an Optical Spectrum Analyser

Autores
Reis, J; V.Rodrigues, A; Robalinho, P; Novais, S; Maia, J; Marques, P; Roma, D; Salvans, J; Canal, M; Ramos, J; Gualani, V; Sisteré, S; Martín, V; Nofrarias, M; Silva, S; Frazão, O;

Publicação
EPJ Web of Conferences

Abstract
It is presented a study of the dependence between the free spectral range (FSR) and the cavity length in Fabry-Perot interferometers. Furthermore, the effect of frequency modulation on the FSR is studied when an optical spectrum analyser (OSA) is used as an interrogator. For low frequency range it is possible to observe this behaviour in the OSA and using an appropriate processing signal it is possible to use the white light interferometry technique.

2023

Measurement of Paracetamol Concentration Using an Erbium-Doped Fiber Ring Cavity

Autores
Soares, L; Perez Herrera, RA; Novais, S; Ferreira, A; Silva, S; Frazao, O;

Publicação
PHOTONICS

Abstract
Process Analytical Technology (PAT) has been increasingly used in the pharmaceutical industry to monitor essential parameters in real-time during pharmaceutical processes. The concentration of Active Pharmaceutical Ingredients (APIs), such as paracetamol, is one of these parameters, and controlling its variations allows for optimization of the production process. In this study, a refractometric sensor, implemented by an interrogation system based on an Erbium-Doped Fiber Ring Cavity (EDFRC), was presented and experimentally demonstrated. The Cavity Ring proposed included a 1 x 3 coupler. One port of the coupler was used to increase the optical power of the system through a Fiber Bragg Grating (FBG), and the other two ports were used as sensing head and reference. The sensor detected variations of paracetamol concentration with a sensitivity of [(-1.00 +/- 0.05) x 10(-3)] nW/(g/kg) and a resolution of 5.53 g/kg. The results demonstrate the potential of this technology as a possible non-invasive PAT tool.

2021

Multiparameter Sensor Based on a Multi-Interferometric Serial Configuration for Temperature and Strain Measurements

Autores
Perez-Herrera R.A.; Bravo M.; Leandro D.; Novais S.; Pradas J.; Lopez-Amo M.;

Publicação
IEEE Journal of Selected Topics in Quantum Electronics

Abstract
In this work, a multi-parameter point sensor based on the combination of Fabry-Perot (FP) and the anti-resonant (AR) reflecting guidance in cascade configuration is proposed and experimentally demonstrated. This structure, based on FP interference and AR reflecting guidance, was fabricated with two different air micro-cavities. The attained experimental results showed different strain and temperature sensitivities for the antiresonance contribution. However, when analyzing the FP interference, only strain sensitivity was observed, demonstrating that this air micro-cavity was also insensitive to temperature variations.

  • 3
  • 8