Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Carla Carmelo Rosa

2008

Nanoparticles for Enhanced Contrast Optical Coherence Tomography

Autores
Maule, CD; Quaresma, P; Carvalho, PA; Jorge, P; Pereira, E; Rosa, CC;

Publicação
1ST CANTERBURY WORKSHOP ON OPTICAL COHERENCE TOMOGRAPHY AND ADAPTIVE OPTICS

Abstract
Recently the area of bioimaging has benefited from new types of image enhancing agents such as quantum dots, carbon nanotubes and other nanoparticles. Cellular or even molecular level resolution has been achieved with different techniques during these last years (i.a. Fluorescence microscopy, PET/CT scan, AFM). Optical Coherence Tomography (OCT) as an imaging technique should also profit from newly developed probes. In this work we explored the tunable properties of different types of nanoparticles as contrast enhancers in OCT applications. We mainly studied the development and characteristics of metallic nanoparticles with tunable properties: gold nanoshells made of a silica core coated with a gold shell. Nanoshell and nanoparticles processing techniques are discussed, as well as their optimization for designing particles with specific absorption and scattering characteristics, and its use in OCT imaging.

2005

Luminescence-based optical fiber chemical sensors

Autores
Jorge, PAS; Caldas, P; Da Silva, JCGE; Rosa, CC; Oliva, AG; Santos, JL; Farahi, F;

Publicação
FIBER AND INTEGRATED OPTICS

Abstract
A scheme for the simultaneous determination of temperature and analyte concentration for application in luminescence-based chemical sensors is proposed. This scheme is applied to an optical oxygen sensor, which is based on the quenching of the fluorescence of a ruthenium complex. Temperature measurement is performed using the excitation radiation and an absorption long-pass filter. Preliminary results are presented that show the viability of an oxygen measurement that is independent of temperature and optical power level. The possibility of self-referenced temperature measurements with semiconductor nanoparticles is also investigated. In order to optimize the sensor design, several different optical fiber probe geometries for oxygen sensing are tested and compared, including different methods of coupling radiation into the optical fiber system. Polyvinyl alcohol (PVA) and polyacrylamide membranes are tested as supports for sensor immobilization in fiber-optical pH sensing devices in aqueous solution. Some results are presented that show the feasibility of using fiber-optical pH indicators for remote monitoring.

2004

Optical fiber probes for fluorescence based oxygen sensing

Autores
Jorge, PAS; Caldas, P; Rosa, CC; Oliva, AG; Santos, JL;

Publicação
SENSORS AND ACTUATORS B-CHEMICAL

Abstract
An optical fiber sensing system, for monitoring oxygen aiming in vivo nuclear magnetic resonance (NMR) applications is presented. Oxygen detection is based on the dynamic quenching of the fluorescence of a ruthenium complex trapped in the porous structure of a sol-gel silica film. Oxygen concentration is determined by phase-modulation fluorometry. Preliminary results concerning the characterization of doped sol-gel thin films deposited by dip coating in glass slides and in optical fiber probes are presented. Four different probe configurations are tested and compared. Best results are obtained with a fiber taper configuration which shows reproducibility and best excitation efficiency. This structure is fully characterized and some considerations regarding optimal fiber optical sensing probes for 02 detection are addressed.

2004

Optical temperature measurement configuration for fluorescence based oxygen sensors

Autores
Jorge, PAS; Caldas, P; Rosa, CC; Oliva, AG; Marques, MB; Santos, JL;

Publicação
SECOND EUROPEAN WORKSHOP ON OPTICAL FIBRE SENSORS: PROCEEDINGS

Abstract
An optical fiber sensor for the measurement of oxygen in gaseous environments, which is based on the quenching of the fluorescence of a ruthenium complex, is presented. The sensing chemistry is immobilized in a sol-gel based solid matrix that is coated on a tapered optical fiber probe. Oxygen measurement is performed both by phase and fluorescence intensity spectroscopy. Experimental results show that the fluorescence intensity and the lifetime depend both on oxygen and temperature. A scheme for simultaneous determination of the temperature and the oxygen concentration is proposed. Temperature measurement is performed using the excitation radiation and an absorption long pass filter. Preliminary results are presented which show a temperature measurement independent of oxygen and of optical power level.

  • 10
  • 10