Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Sérgio Santos

2020

The future of power systems: Challenges, trends, and upcoming paradigms

Autores
Lopes, JAP; Madureira, AG; Matos, M; Bessa, RJ; Monteiro, V; Afonso, JL; Santos, SF; Catalao, JPS; Antunes, CH; Magalhaes, P;

Publicação
WILEY INTERDISCIPLINARY REVIEWS-ENERGY AND ENVIRONMENT

Abstract
The decarbonization of the economy, for which the contribution of power systems is significant, is a growing trend in Europe and in the world. In order to achieve the Paris Agreement's ambitious environmental goals, a substantial increase in the contribution of renewable sources to the energy generation mix is required. This trend brings about relevant challenges as the integration of this type of sources increases, namely in terms of the distribution system operation. In this paper, the challenges foreseen for future power systems are identified and the most effective approaches to deal with them are reviewed. The strategies include the development of Smart Grid technologies (meters, sensors, and actuators) coupled with computational intelligence that act as new sources of data, as well as the connection of distributed energy resources to distribution grids, encompassing the deployment of distributed generation and storage systems and the dissemination of electric vehicles. The impact of these changes in the distribution system as a whole is evaluated from a technical and environmental perspective. In addition, a review of management and control architectures designed for distribution systems is conducted. This article is categorized under: Energy Infrastructure > Systems and Infrastructure Energy Infrastructure > Economics and Policy

2020

Multi-Flexibility Option Integration to Cope With Large-Scale Integration of Renewables

Autores
Cruz, MRM; Fitiwi, DZ; Santos, SF; Mariano, SJPS; Catalao, JPS;

Publicação
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY

Abstract
Conventional electrical networks are slowly changing. A strong sense of policy urges as well as commitments have recently been surfacing in many countries to integrate more environmentally friendly energy sources into electrical systems. In particular, stern efforts have been made to integrate more and more solar and wind energy sources. One of the major setbacks of such resources arises as a result of their intermittent nature, creating several problems in the electrical systems from a technical, market, operation, and planning perspectives. This work focuses on the operation of an electrical system with large-scale integration of solar and wind power. In order to cope with the intermittency inherent to such power sources, it is necessary to introduce more flexibility into the system. In this context, demand response, energy storage systems, and dynamic reconfiguration of the system are introduced, and the operational performance of the resulting system is thoroughly analyzed. To carry out the required analysis, a stochastic mixed-integer linear programming operational model is developed, whose efficacy is tested on an IEEE 119-bus standard network system. Numerical results indicate that the joint deployment and management of various flexibility mechanisms into the system can support a seamless integration of large-scale intermittent renewable energies.

2020

Prosumer Flexibility: A Comprehensive State-of-the-Art Review and Scientometric Analysis

Autores
Gough, M; Santos, SF; Javadi, M; Castro, R; Catalao, JPS;

Publicação
ENERGIES

Abstract
There is a growing need for increased flexibility in modern power systems. Traditionally, this flexibility has been provided by supply-side technologies. There has been an increase in the research surrounding flexibility services provided by demand-side actors and technologies, especially flexibility services provided by prosumers (those customers who both produce and consume electricity). This work gathers 1183 peer-reviewed journal articles concerning the topic and uses them to identify the current state of the art. This body of literature was analysed with two leading textual and scientometric analysis tools, SAS (c) Visual Text Analytics and VOSviewer, in order to provide a detailed understanding of the current state-of-the-art research on prosumer flexibility. Trends, key ideas, opportunities and challenges were identified and discussed.

2020

Optimization of Prosumer's Flexibility Taking Network Constraints into Account

Autores
Gough, M; Ashraf, P; Santos, SF; Javadi, M; Lotfi, M; Osorio, GJ; Catalao, JPS;

Publicação
2020 20TH IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2020 4TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC/I&CPS EUROPE)

Abstract
The integration of new technologies at the residential level such as energy storage systems, electric vehicles, solar photovoltaic generation and mini wind turbines triggered the appearance of a new agent in the power systems called prosumers. This agent has the potential to provide new forms of flexibility and cost-effective solutions. However, associated with these new solutions there are also a number of problems that affect these solutions, particularly network constraints. This work presents an analysis not only on the benefits of utilizing the prosumer's flexibility but also to the problems associated with the operation and optimization of the network. A new model is presented that considers energy transactions between prosumers in the neighborhood and between them and the network using on a stochastic framework, in order to account for a set of uncertainties in the form of scenarios associated with the availability of various resources and technologies. The results show the economic benefit of energy transactions between prosumers resulting in more flexibility for the system while highlighting the effect of network restrictions and potential problems associated with them.

2020

Optimisation of Prosumers' Participation in Energy Transactions

Autores
Gough, M; Santos, SF; Javadi, M; Fitiwi, DZ; Osorio, GJ; Castro, R; Lotfi, M; Catalao, JPS;

Publicação
2020 20TH IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2020 4TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC/I&CPS EUROPE)

Abstract
There is an ongoing paradigm shift occurring in the electricity sector. In particular, previously passive consumers are now becoming active prosumers and they can now offer important and cost-effective new forms of flexibility and demand response potential to the electricity sector and this can translate into system-wide operational and economic benefits. This work focuses on developing a model where prosumers participate in demand response programs through varying tariff schemes, and the model also quantifies the benefits of this flexibility and cost-reductions. This work includes transactive energy trading between various prosumers, the grid and the neighborhood. A stochastic tool is developed for this analysis, which also allows the quantification of the collective behavior so that the periods with the greatest demand response potential can be identified. Numerical results indicate that the optimization of energy transactions amongst the prosumers, and including the grid, leads to considerable cost reductions as well as introducing additional flexibility in the presence of demand response mechanisms.

2020

Optimal self-scheduling of home energy management system in the presence of photovoltaic power generation and batteries

Autores
Javadi, MS; Gough, M; Lotfi, M; Nezhad, AE; Santos, SF; Catalao, JPS;

Publicação
ENERGY

Abstract
Today, the fact that consumers are becoming more active in electrical power systems, along with the development in electronic and control devices, makes the design of Home Energy Management Systems (HEMSs) an expedient approach to mitigate their costs. The added costs incurred by consumers are mainly paying for the peak-load demand and the system's operation and maintenance. Thus, developing and utilizing an efficient HEMS would provide an opportunity both to the end-users and system operators to reduce their costs. Accordingly, this paper proposes an effective HEMS design for the self-scheduling of assets of a residential end-user. The suggested model considers the existence of a dynamic pricing scheme such as Real-Time Pricing (RTP), Time-of-Use (TOU), and Inclining Block Rate (IBR), which are effective Demand Response Programs (DRPs) put in place to alleviate the energy bill of consumers and incentivize demand-side participation in power systems. In this respect, the self-scheduling problem is modeled using a stochastic Mixed-Integer Linear Programming (MILP) framework, which allows optimal determination of the status of the home appliances throughout the day, obtaining the global optimal solution with a fast convergence rate. It is noted that the consumer is equipped with self-generation assets through a Photovoltaic (PV) panel and a battery. This system would make the consumers have energy arbitrage and transact energy with the utility grid. Consequently, the proposed model is demonstrated by determining the best operation schedule for different case studies, highlighting the impact each different DRP has on designing and utilizing the HEMS system for best results.

  • 8
  • 9