Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Mohammad Javadi

2017

Robust Energy Hub Management Using Information Gap Decision Theory

Autores
Javadi, MS; Anvari Moghaddam, A; Guerrero, JM;

Publicação
IECON 2017 - 43RD ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY

Abstract
This paper proposes a robust optimization framework for energy hub management. It is well known that the operation of energy systems can be negatively affected by uncertain parameters, such as stochastic load demand or generation. In this regard, it is of high significance to propose efficient tools in order to deal with uncertainties and to provide reliable operating conditions. On a broader scale, an energy hub includes diverse energy sources for supplying both electrical load and heating/cooling demands with stochastic behaviors. Therefore, this paper utilizes the Information Gap Decision Theory (IGDT) to tackle this uncertainty as an efficient robust optimization tool with low complexity to ensure the optimal operation of the system according to the priorities of the decision maker entity. The proposed optimization framework is also implemented on a benchmark energy hub which includes different energy sources and evaluated under different working conditions. © 2017 IEEE.

2024

Protection system planning in distribution networks with microgrids using a bi-level multi-objective and multi-criteria optimization technique

Autores
Reiz, C; Leite, JB; Gouveia, CS; Javadi, MS;

Publicação
ELECTRIC POWER SYSTEMS RESEARCH

Abstract
Microgrids are able to improve several features of power systems, such as energy efficiencies, operating costs and environmental impacts. Nevertheless, microgrids' protection must work congruently with power distribution protection to safely take all advantages. This research contributes to enable their protection by proposing a bilevel method to simultaneously solve the allocation and coordination problems, where the proposed scheme also includes local protections of distributed energy resources. The uncertainties associated with generation and loads are categorized by the k-means method, as well. The non-dominated sorting genetic algorithm II is employed in the upper-level task to solve the protection and control devices allocation problem with two opposing objectives. In the lower-level task, a genetic algorithm ensures their coordination. Protection devices include reclosers and fuses from the network, and directional relays for the point of common coupling of microgrids, while control devices consist of remote-controlled switches. In contrast to related works, local devices installed at the point of coupling of distributed generation units are considered as well, such as voltage-restrained overcurrent relays and frequency relays. The optimal solution for the decision-maker is achieved by utilizing the compromise programming technique. Results show the importance of solving the allocation and coordination problems simultaneously, achieving up to $25,000 cost savings compared to cases that solve these problems separately. The integrated strategy allows the network operator to select the optimum solution for the protective system and avoid corrective actions afterward. The results also show the viability of the islanding operation depending on the decision maker's criteria.

2024

Optimal power flow using a hybridization algorithm of arithmetic optimization and aquila optimizer

Autores
Ahmadipour, M; Othman, MM; Bo, R; Javadi, MS; Ridha, HM; Alrifaey, M;

Publicação
EXPERT SYSTEMS WITH APPLICATIONS

Abstract
In this paper, a hybridization method based on Arithmetic optimization algorithm (AOA) and Aquila optimizer (AO) solver namely, the AO-AOA is applied to solve the Optimal Power Flow (OPF) problem to independently optimize generation fuel cost, power loss, emission, voltage deviation, and L index. The proposed AO-AOA algorithm follows two strategies to find a better optimal solution. The first strategy is to introduce an energy parameter (E) to balance the transition between the individuals' procedure of exploration and exploitation in AOAOA swarms. Next, a piecewise linear map is employed to reduce the energy parameter's (E) randomness. To evaluate the performance of the proposed AO-AOA algorithm, it is tested on two well-known power systems i.e., IEEE 30-bus test network, and IEEE 118-bus test system. Moreover, to validate the effectiveness of the proposed (AO-AOA), it is compared with a famous optimization technique as a competitor i.e., Teaching-learning-based optimization (TLBO), and recently published works on solving OPF problems. Furthermore, a robustness analysis was executed to determine the reliability of the AO-AOA solver. The obtained result confirms that not only the AO-AOA is efficient in optimization with significant convergence speed, but also denotes the dominance and potential of the AO-AOA in comparison with other works.

2023

Towards Reducing Electricity Costs in an Energy Community Equipped with Home Energy Management Systems and a Local Energy Controller

Autores
Javadi, MS; Osório, GJ; Cardoso, RJA; Catalão, JPS;

Publicação
IEEE Conference on Control Technology and Applications, CCTA 2023, Bridgetown, Barbados, August 16-18, 2023

Abstract
An energy community equipped with Home Energy Management Systems (HEMSs) is considered in this paper. A local energy controller in the energy community makes it possible to transact energy between houses to support the different consumption patterns of each end-user. Price-based voluntary Demand Response (DR) programs are applied to each house to motivate end-users to alter their consumption patterns, allowing the necessary flexibility of the electrical grid. Also, the existence of Renewable Energy Sources (RES) micro-generation and an Energy Storage System (ESS) are taken into account. The results demonstrate that the proposed model based on Mixed-Integer Linear Programming (MILP) is fully capable of reducing daily electricity costs while considering end-users' comfort and respecting the different technical constraints. © 2023 IEEE.

2023

Optimal Participation of Virtual Power Plants in the Electricity Market Considering Multi-Energy Systems

Autores
Javadi M.S.; Osorio G.J.; Parente A.S.; Catalao J.P.S.;

Publicação
2023 International Conference on Smart Energy Systems and Technologies, SEST 2023

Abstract
The growth and modernization of the power system are the keys to enabling economic progress. The deregulation, added to the new emerging production technologies, conversion, and storage, triggered a change in the way of managing the power system worldwide. This work analyses the optimal dispatch of a virtual power plant (VPP) with active participation in the electricity market, considering multi-energy systems. The objective is to minimize the total operating cost of the power plant. The power plant is fed by two external networks: electrical and natural gas. The VPP is composed of energy production, conversion, and storage technologies, also considering the integration of a wind turbine and a set of electric vehicles (EVs). In addition to the Grid-to-Vehicle (G2V) charging, the advantage of Vehicle-to-Grid (V2G) technology is also verified, which allows the injection of power into the grid through the vehicles and Vehicle-to-Load (V2L) technology, enabling EVs to contribute to the satisfaction of the electrical load, reducing the costs, showing the advantages as well of EVs' integration in the VPP under analysis.

2023

Bi-Level Approach for Flexibility Provision by Prosumers in Distribution Networks

Autores
Ramírez-López S.; Gutiérrez-Alcaraz G.; Gough M.; Javadi M.S.; Osório G.J.; Catalão J.P.S.;

Publicação
IEEE Transactions on Industry Applications

Abstract
The increasing number of Distributed Energy Resources (DERs) provides new opportunities for increased interactions between prosumers and local distribution companies. Aggregating large numbers of prosumers through Home Energy Management Systems (HEMS) allows for easier control and coordination of these interactions. With the contribution of the dedicated end-users in fulfilling the required flexibility during the day, the network operator can easily handle the power mismatches to avoid fluctuations in the load-generation side. The bi-level optimization allows for a more comprehensive and systematic assessment of flexibility procurement strategies. By considering both the network operator’s objectives and the preferences and capabilities of end-users, this approach enables a more nuanced and informed decision-making process. Hence, this article presents a bi-level optimization model to examine the potential for several groups of prosumers to offer flexibility services to distribution companies. The model is applied to the IEEE 33 bus test system and solved through distributed optimization techniques. The model considers various DERs, including Battery Energy Storage Systems (BESS). Results show that the groups of aggregated consumers can provide between ±7 to ±29 kW flexibility in each interval, which is significant. Furthermore, the aggregators’ flexibility capacity is closely linked to the demand at each node.

  • 25
  • 26