Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Mohammad Javadi

2023

MACHINE LEARNING-BASED IDENTIFICATION AND MITIGATION OF VULNERABILITIES IN DISTRIBUTION SYSTEMS AGAINST NATURAL HAZARDS

Autores
Venkatasubramanian B.V.; Lotfi M.; Mancarella P.; Águas A.; Javadi M.; Carvalho L.; Gouveia C.; Panteli M.;

Publicação
IET Conference Proceedings

Abstract
Distribution networks are vulnerable to natural hazards which can cause major social and economic consequences. Identifying vulnerable areas and developing operational strategies, such as dispatching mobile energy systems, can help mitigate the effects of extreme events. Conventional approaches, mainly N-1/N-2 contingency security analysis, are efficient but they do not fully provide a comprehensive picture of the stochastic nature of the hazard impact. Stochastic approaches are more accurate but in general they are computationally expensive and hence not practical for the resilient operational decision-making of distribution system operators. Therefore, this paper develops a novel framework based on an adjacency-resource matrix (ARM) and an unsupervised machine learning algorithm to first identify vulnerable nodes. Next, these vulnerable nodes are utilized in the mitigation stage in order to minimize the expected energy not served (EENS) against a natural hazard. The efficiency of the proposed framework is tested on a 125-node Portuguese distribution system.

2024

Bi-Level Approach for Flexibility Provision by Prosumers in Distribution Networks

Autores
Ramírez-López, S; Gutiérrez-Alcaraz, G; Gough, M; Javadi, MS; Osório, GJ; Catalão, JPS;

Publicação
IEEE Transactions on Industry Applications

Abstract

2024

A high-performance democratic political algorithm for solving multi-objective optimal power flow problem

Autores
Ahmadipour, M; Ali, Z; Othman, MM; Bo, R; Javadi, MS; Ridha, HM; Alrifaey, M;

Publicação
EXPERT SYSTEMS WITH APPLICATIONS

Abstract
The optimal power flow (OPF) is one of the most noticeable and integral tools in the power system operation and control and aims to obtain the most economical combination of power plants to exactly serve the total demand of the system without any load shedding or islanding through adjusting control variables to meet operational, economic, and environmental constraints. To achieve this goal, the successful implementation of an expeditious and reliable optimization algorithm is crucial. To solve this issue, this research proposes an enhanced democratic political algorithm (DPA), which can effectively solve multi-objective optimum power flow problems. The proposed method is a version of the democratic political optimization algorithm in which the search capability of this method to cover the borders of the Pareto frontier is enhanced. For the sake of practicality, the objectives with innate differences such as total emission, active power loss, and fuel cost are selected. Due to the practical limitations in real power systems, additional restrictions including valve-point effect, multi-fuel characteristics, and forbidden operational zones, are also considered. The proposed approach is tested and validated on IEEE 57 bus and IEEE 118-bus systems with different case studies. Simulation results are analyzed and compared with two popular and commonly used multi-objective-evolutionary algorithms namely, non-dominated sorting genetic algorithm II (NSGA-II) and the multi-objective particle swarm optimization (MOPSO) on the problem. The study results illustrate the effectiveness of the proposed method in handling different scales, non-convex, and multi-objective optimization problems.

2024

Demand response program integrated with self-healing virtual microgrids for enhancing the distribution system resiliency

Autores
Nowbandegani, MT; Nazar, MS; Javadi, MS; Catalao, JPS;

Publicação
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS

Abstract
This paper proposes a comprehensive optimization program to increase economic efficiency and improve the resiliency of the Distribution Network (DN). A Demand Response Program (DRP) integrated with Home Energy Storage Systems (HESSs) is presented to optimize the energy consumption of household consumers. Each consumer implements a Smart Home Energy Management System (SHEMS) to optimize their energy consumption according to their desired comfort and preferences. To modify the consumption pattern of household consumers, a Real-Time Pricing (RTP) algorithm is proposed to reflect the energy price of the wholesale market to the retail market and consumers. In addition, a Self-Healing System Reconfiguration (SHSR) program integrated with Distributed Energy Resources (DER), reactive power compensation equipment, and Energy Storage Systems (ESSs) is presented to manage the DN energy and restore the network loads in disruptive events. The reconfiguration operation is performed by converting the isolated part of the DN from the upstream network to several self-sufficient networked virtual microgrids without executing any switching process. Real data of California households are considered to model the home appliances and HESSs. The proposed comprehensive program is validated on the modified IEEE 123-bus feeder in normal and emergency operating conditions.

2024

Optimal operation of lithium-ion batteries in microgrids using a semidefinite thermal model

Autores
Nezhad, AE; Mobtahej, M; Javadi, MS; Nardelli, PHJ; Sahoo, S;

Publicação
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS

Abstract
The growing adoption of microgrids necessitates efficient management of electrical energy storage units to ensure reliable and sustainable power supply. This paper investigates a thermal management system (TMS) for maintaining the longevity of large-scale batteries. To streamline the thermal modeling of batteries, the McCormick relaxation method is employed to linearize a nonlinear and interdependent heat generation model. The thermal model of the battery follows a nonlinear behavior where the generated heat makes the battery system temperature soar, thereby affecting the thermal performance of the battery. To showcase the efficacy of the proposed approach, four distinct case scenarios are studied, highlighting the critical importance of batteries within microgrid operations. A comparative analysis is conducted between linear and nonlinear models for TMS performance. A quantitative assessment based on simulation results demonstrates the precision of the linearized model, particularly in a multitemporal optimal power flow and day-ahead scheduling of microgrids incorporating energy storage units. Controlling the battery temperature within a permissible range (from 15 degrees C to 40 degrees C) is achieved by using a heating, ventilation, and air conditioning (HVAC) system. The paper explores the economic implications of energy storage units in microgrids by extracting and comparing daily operational costs with and without battery integration. The findings reveal that the inclusion of energy storage units yields substantial economic benefits, with potential profit margins of approximately 20 % during typical working days and 60 % on weekends.

  • 26
  • 26