Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Tiago Filipe Gonçalves

2018

On the Use of Natural User Interfaces in Physical Rehabilitation: A Web-based Application for Patients with Hip Prosthesis

Autores
Rybarczyk, Y; Cointe, C; Goncalves, T; Minhoto, V; Deters, JK; Villarreal, S; Gonzalo, AA; Baldeon, J; Esparza, D;

Publicação
JOURNAL OF SCIENCE AND TECHNOLOGY OF THE ARTS

Abstract
This study aims to develop a telemedicine platform for self-motor rehabilitation and remote monitoring by health professionals, in order to enhance recovery in patients after hip replacement. The implementation of such a technology is justified by medical (improvement of the recovery process by the possibility to perform rehabilitation exercises more frequently), economic (reduction of the number of medical appointments and the time patients spend at the hospital), mobility (diminution of the transportation to and from the hospital) and ethics (healthcare democratization and increased empowerment of the patient) purposes. The Kinect camera is used as a Natural User Interface to capture the physical exercises performed at home by the patients. The quality of the movement is evaluated in real-time by an assessment module implemented according to a Hidden-Markov Model approach. The results show a high accuracy in the evaluation of the movements (92% of correct classification). Finally, the usability of the platform is tested through the System Usability Scale (SUS). The overall SUS score is 81 out of 100, which suggests a good usability of the Web application. Further work will focus on the development of additional functionalities and an evaluation of the impact of the platform on the recovery process.

2021

An exploratory study of interpretability for face presentation attack detection

Autores
Sequeira, AF; Goncalves, T; Silva, W; Pinto, JR; Cardoso, JS;

Publicação
IET BIOMETRICS

Abstract
Biometric recognition and presentation attack detection (PAD) methods strongly rely on deep learning algorithms. Though often more accurate, these models operate as complex black boxes. Interpretability tools are now being used to delve deeper into the operation of these methods, which is why this work advocates their integration in the PAD scenario. Building upon previous work, a face PAD model based on convolutional neural networks was implemented and evaluated both through traditional PAD metrics and with interpretability tools. An evaluation on the stability of the explanations obtained from testing models with attacks known and unknown in the learning step is made. To overcome the limitations of direct comparison, a suitable representation of the explanations is constructed to quantify how much two explanations differ from each other. From the point of view of interpretability, the results obtained in intra and inter class comparisons led to the conclusion that the presence of more attacks during training has a positive effect in the generalisation and robustness of the models. This is an exploratory study that confirms the urge to establish new approaches in biometrics that incorporate interpretability tools. Moreover, there is a need for methodologies to assess and compare the quality of explanations.

2021

Applying Machine Learning for Traffic Forecasting in Porto, Portugal

Autores
Maia, P; Morgado, J; Goncalves, T; Albuquerque, T;

Publicação
MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, PT II

Abstract
Pollutant emissions from passenger cars give rise to harmful effects on human health and the environment. Predicting traffic flow is a challenging problem, but essential to understand what factors influence car traffic and what measures should be taken to reduce carbon dioxide emissions. In this work, we developed a predictive model to forecast traffic flow in several locations in the city of Porto for 24 h later, i.e., the next day at the same time. We trained a XGBoost Regressor with multi-modal data from 2018 and 2019 obtained from traffic and weather sensors of the city of Porto and the geographic location of several points of interest. The proposed model achieved a mean absolute error, mean square error, Spearman's rank correlation coefficient, and Pearson correlation coefficient equal to 80.59, 65395, 0.9162, and 0.7816, respectively, when tested on the test set. The developed model makes it possible to analyse which areas of the city of Porto will have more traffic the next day and take measures to optimise this increasing flow of cars. One of the ideas present in the literature is to develop intelligent traffic lights that change their timers according to the expected traffic in the area. This system could help decrease the levels of carbon dioxide emitted and therefore decrease its harmful effects on the health of the population and the environment.

2022

A Survey on Attention Mechanisms for Medical Applications: are we Moving Toward Better Algorithms?

Autores
Goncalves, T; Rio-Torto, I; Teixeira, LF; Cardoso, JS;

Publicação
IEEE ACCESS

Abstract
The increasing popularity of attention mechanisms in deep learning algorithms for computer vision and natural language processing made these models attractive to other research domains. In healthcare, there is a strong need for tools that may improve the routines of the clinicians and the patients. Naturally, the use of attention-based algorithms for medical applications occurred smoothly. However, being healthcare a domain that depends on high-stake decisions, the scientific community must ponder if these high-performing algorithms fit the needs of medical applications. With this motto, this paper extensively reviews the use of attention mechanisms in machine learning methods (including Transformers) for several medical applications based on the types of tasks that may integrate several works pipelines of the medical domain. This work distinguishes itself from its predecessors by proposing a critical analysis of the claims and potentialities of attention mechanisms presented in the literature through an experimental case study on medical image classification with three different use cases. These experiments focus on the integrating process of attention mechanisms into established deep learning architectures, the analysis of their predictive power, and a visual assessment of their saliency maps generated by post-hoc explanation methods. This paper concludes with a critical analysis of the claims and potentialities presented in the literature about attention mechanisms and proposes future research lines in medical applications that may benefit from these frameworks.

2023

Two-Stage Framework for Faster Semantic Segmentation

Autores
Cruz, R; Silva, DTE; Goncalves, T; Carneiro, D; Cardoso, JS;

Publicação
SENSORS

Abstract
Semantic segmentation consists of classifying each pixel according to a set of classes. Conventional models spend as much effort classifying easy-to-segment pixels as they do classifying hard-to-segment pixels. This is inefficient, especially when deploying to situations with computational constraints. In this work, we propose a framework wherein the model first produces a rough segmentation of the image, and then patches of the image estimated as hard to segment are refined. The framework is evaluated in four datasets (autonomous driving and biomedical), across four state-of-the-art architectures. Our method accelerates inference time by four, with additional gains for training time, at the cost of some output quality.

2023

Fill in the blank for fashion complementary outfit product Retrieval: VISUM summer school competition

Autores
Castro, E; Ferreira, PM; Rebelo, A; Rio-Torto, I; Capozzi, L; Ferreira, MF; Goncalves, T; Albuquerque, T; Silva, W; Afonso, C; Sousa, RG; Cimarelli, C; Daoudi, N; Moreira, G; Yang, HY; Hrga, I; Ahmad, J; Keswani, M; Beco, S;

Publicação
MACHINE VISION AND APPLICATIONS

Abstract
Every year, the VISion Understanding and Machine intelligence (VISUM) summer school runs a competition where participants can learn and share knowledge about Computer Vision and Machine Learning in a vibrant environment. 2021 VISUM's focused on applying those methodologies in fashion. Recently, there has been an increase of interest within the scientific community in applying computer vision methodologies to the fashion domain. That is highly motivated by fashion being one of the world's largest industries presenting a rapid development in e-commerce mainly since the COVID-19 pandemic. Computer Vision for Fashion enables a wide range of innovations, from personalized recommendations to outfit matching. The competition enabled students to apply the knowledge acquired in the summer school to a real-world problem. The ambition was to foster research and development in fashion outfit complementary product retrieval by leveraging vast visual and textual data with domain knowledge. For this, a new fashion outfit dataset (acquired and curated by FARFETCH) for research and benchmark purposes is introduced. Additionally, a competitive baseline with an original negative sampling process for triplet mining was implemented and served as a starting point for participants. The top 3 performing methods are described in this paper since they constitute the reference state-of-the-art for this particular problem. To our knowledge, this is the first challenge in fashion outfit complementary product retrieval. Moreover, this joint project between academia and industry brings several relevant contributions to disseminating science and technology, promoting economic and social development, and helping to connect early-career researchers to real-world industry challenges.

  • 2
  • 3