Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Tiago Filipe Gonçalves

2023

Interpretability-Guided Human Feedback During Neural Network Training

Autores
Serrano e Silva, P; Cruz, R; Shihavuddin, ASM; Gonçalves, T;

Publicação
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Abstract

2022

Explainable Biometrics in the Age of Deep Learning

Autores
Neto, PC; Gonçalves, T; Pinto, JR; Silva, W; Sequeira, AF; Ross, A; Cardoso, JS;

Publicação
CoRR

Abstract

2023

Evaluating Privacy on Synthetic Images Generated using GANs: Contributions of the VCMI Team to ImageCLEFmedical GANs 2023

Autores
Montenegro, H; Neto, PC; Patrício, C; Torto, IR; Gonçalves, T; Teixeira, LF;

Publicação
Working Notes of the Conference and Labs of the Evaluation Forum (CLEF 2023), Thessaloniki, Greece, September 18th to 21st, 2023.

Abstract
This paper presents the main contributions of the VCMI Team to the ImageCLEFmedical GANs 2023 task. This task aims to evaluate whether synthetic medical images generated using Generative Adversarial Networks (GANs) contain identifiable characteristics of the training data. We propose various approaches to classify a set of real images as having been used or not used in the training of the model that generated a set of synthetic images. We use similarity-based approaches to classify the real images based on their similarity to the generated ones. We develop autoencoders to classify the images through outlier detection techniques. Finally, we develop patch-based methods that operate on patches extracted from real and generated images to measure their similarity. On the development dataset, we attained an F1-score of 0.846 and an accuracy of 0.850 using an autoencoder-based method. On the test dataset, a similarity-based approach achieved the best results, with an F1-score of 0.801 and an accuracy of 0.810. The empirical results support the hypothesis that medical data generated using deep generative models trained without privacy constraints threatens the privacy of patients in the training data. © 2023 Copyright for this paper by its authors.

2024

Massively Annotated Datasets for Assessment of Synthetic and Real Data in Face Recognition

Autores
Neto, PC; Mamede, RM; Albuquerque, C; Gonçalves, T; Sequeira, AF;

Publicação
2024 IEEE 18TH INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION, FG 2024

Abstract
Face recognition applications have grown in parallel with the size of datasets, complexity of deep learning models and computational power. However, while deep learning models evolve to become more capable and computational power keeps increasing, the datasets available are being retracted and removed from public access. Privacy and ethical concerns are relevant topics within these domains. Through generative artificial intelligence, researchers have put efforts into the development of completely synthetic datasets that can be used to train face recognition systems. Nonetheless, the recent advances have not been sufficient to achieve performance comparable to the state-of-the-art models trained on real data. To study the drift between the performance of models trained on real and synthetic datasets, we leverage a massive attribute classifier (MAC) to create annotations for four datasets: two real and two synthetic. From these annotations, we conduct studies on the distribution of each attribute within all four datasets. Additionally, we further inspect the differences between real and synthetic datasets on the attribute set. When comparing through the Kullback-Leibler divergence we have found differences between real and synthetic samples. Interestingly enough, we have verified that while real samples suffice to explain the synthetic distribution, the opposite could not be further from being true.

2024

ON THE SUITABILITY OF B-COS NETWORKS FOR THE MEDICAL DOMAIN

Autores
Rio-Torto, I; Gonçalves, T; Cardoso, JS; Teixeira, LF;

Publicação
IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI 2024

Abstract
In fields that rely on high-stakes decisions, such as medicine, interpretability plays a key role in promoting trust and facilitating the adoption of deep learning models by the clinical communities. In the medical image analysis domain, gradient-based class activation maps are the most widely used explanation methods and the field lacks a more in depth investigation into inherently interpretable models that focus on integrating knowledge that ensures the model is learning the correct rules. A new approach, B-cos networks, for increasing the interpretability of deep neural networks by inducing weight-input alignment during training showed promising results on natural image classification. In this work, we study the suitability of these B-cos networks to the medical domain by testing them on different use cases (skin lesions, diabetic retinopathy, cervical cytology, and chest X-rays) and conducting a thorough evaluation of several explanation quality assessment metrics. We find that, just like in natural image classification, B-cos explanations yield more localised maps, but it is not clear that they are better than other methods' explanations when considering more explanation properties.

2022

A survey on attention mechanisms for medical applications: are we moving towards better algorithms?

Autores
Gonçalves, T; Torto, IR; Teixeira, LF; Cardoso, JS;

Publicação
CoRR

Abstract
Abstract The increasing popularity of attention mechanisms in deep learning algorithms for computer vision and natural language processing made these models attractive to other research domains. In healthcare, there is a strong need for tools that may improve the routines of the clinicians and the patients. Naturally, the use of attention-based algorithms for medical applications occurred smoothly. However, being healthcare a domain that depends on high-stake decisions, the scientific community must ponder if these high-performing algorithms fit the needs of medical applications. With this motto, this paper extensively reviews the use of attention mechanisms in machine learning (including Transformers) for several medical applications. This work distinguishes itself from its predecessors by proposing a critical analysis of the claims and potentialities of attention mechanisms presented in the literature through an experimental case study on medical image classification with three different use cases. These experiments focus on the integrating process of attention mechanisms into established deep learning architectures, the analysis of their predictive power, and a visual assessment of their saliency maps generated by post-hoc explanation methods. This paper concludes with a critical analysis of the claims and potentialities presented in the literature about attention mechanisms and proposes future research lines in medical applications that may benefit from these frameworks.

  • 4
  • 6