Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Tiago Filipe Gonçalves

2024

An End-to-End Framework to Classify and Generate Privacy-Preserving Explanations in Pornography Detection

Autores
Vieira, M; Goncalves, T; Silva, W; Sequeira, F;

Publicação
BIOSIG 2024 - Proceedings of the 23rd International Conference of the Biometrics Special Interest Group

Abstract
The proliferation of explicit material online, particularly pornography, has emerged as a paramount concern in our society. While state-of-the-art pornography detection models already show some promising results, their decision-making processes are often opaque, raising ethical issues. This study focuses on uncovering the decision-making process of such models, specifically fine-tuned convolutional neural networks and transformer architectures. We compare various explainability techniques to illuminate the limitations, potential improvements, and ethical implications of using these algorithms. Results show that models trained on diverse and dynamic datasets tend to have more robustness and generalisability when compared to models trained on static datasets. Additionally, transformer models demonstrate superior performance and generalisation compared to convolutional ones. Furthermore, we implemented a privacy-preserving framework during explanation retrieval, which contributes to developing secure and ethically sound biometric applications. © 2024 IEEE.

2024

Interpretable AI for medical image analysis: methods, evaluation, and clinical considerations

Autores
Gonçalves, T; Hedström, A; Pahud de Mortanges, A; Li, X; Müller, H; Cardoso, S; Reyes, M;

Publicação
Trustworthy Ai in Medical Imaging

Abstract
In the healthcare context, artificial intelligence (AI) has the potential to power decision support systems and help health professionals in their clinical decisions. However, given its complexity, AI is usually seen as a black box that receives data and outputs a prediction. This behavior may jeopardize the adoption of this technology by the healthcare community, which values the existence of explanations to justify a clinical decision. Besides, the developers must have a strategy to assess and audit these systems to ensure their reproducibility and quality in production. The field of interpretable artificial intelligence emerged to study how these algorithms work and clarify their behavior. This chapter reviews several interpretability of AI algorithms for medical imaging, discussing their functioning, limitations, benefits, applications, and evaluation strategies. The chapter concludes with considerations that might contribute to bringing these methods closer to the daily routine of healthcare professionals. © 2025 Elsevier Inc. All rights reserved.

2024

Disentangling morphed identities for face morphing detection

Autores
Caldeira, E; Neto, PC; Gonçalves, T; Damer, N; Sequeira, AF; Cardoso, JS;

Publicação
Science Talks

Abstract

2024

Classification of Keratitis from Eye Corneal Photographs using Deep Learning

Autores
Beirão, MM; Matos, J; Gonçalves, T; Kase, C; Nakayama, LF; Freitas, Dd; Cardoso, JS;

Publicação
IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024, Lisbon, Portugal, December 3-6, 2024

Abstract
Keratitis is an inflammatory corneal condition responsible for 10% of visual impairment in low- and middle-income countries (LMICs), with bacteria, fungi, or amoeba as the most common infection etiologies. While an accurate and timely diagnosis is crucial for the selected treatment and the patients' sight outcomes, due to the high cost and limited availability of laboratory diagnostics in LMICs, diagnosis is often made by clinical observation alone, despite its lower accuracy. In this study, we investigate and compare different deep learning approaches to diagnose the source of infection: 1) three separate binary models for infection type predictions; 2) a multitask model with a shared backbone and three parallel classification layers (Multitask V1); and, 3) a multitask model with a shared backbone and a multi-head classification layer (Multitask V2). We used a private Brazilian cornea dataset to conduct the empirical evaluation. We achieved the best results with Multitask V2, with an area under the receiver operating characteristic curve (AUROC) confidence intervals of 0.7413-0.7740 (bacteria), 0.83950.8725 (fungi), and 0.9448-0.9616 (amoeba). A statistical analysis of the impact of patient features on models' performance revealed that sex significantly affects amoeba infection prediction, and age seems to affect fungi and bacteria predictions. © 2024 IEEE.

2024

Classification of Keratitis from Eye Corneal Photographs using Deep Learning

Autores
Beirão, MM; Matos, J; Gonçalves, T; Kase, C; Nakayama, LF; Freitas, Dd; Cardoso, JS;

Publicação
CoRR

Abstract

2024

Abstract PO3-19-11: CINDERELLA Clinical Trial (NCT05196269): using artificial intelligence-driven healthcare to enhance breast cancer locoregional treatment decisions

Autores
Eduard-Alexandru Bonci; Orit Kaidar-Person; Marília Antunes; Oriana Ciani; Helena Cruz; Rosa Di Micco; Oreste Davide Gentilini; Nicole Rotmensz; Pedro Gouveia; Jörg Heil; Pawel Kabata; Nuno Freitas; Tiago Gonçalves; Miguel Romariz; Helena Montenegro; Hélder P. Oliveira; Jaime S. Cardoso; Henrique Martins; Daniela Lopes; Marta Martinho; Ludovica Borsoi; Elisabetta Listorti; Carlos Mavioso; Martin Mika; André Pfob; Timo Schinköthe; Giovani Silva; Maria-Joao Cardoso;

Publicação
Cancer Research

Abstract
Abstract Background. Breast cancer treatment has improved overall survival rates, with different locoregional approaches offering patients similar locoregional control but variable aesthetic outcomes that may lead to disappointment and poor quality of life (QoL). There are no standardized methods for informing patients of the different therapies prior to intervention, nor validated tools for evaluation of aesthetics and patients' expectations. The CINDERELLA Project is based on years of research and developments of new healthcare technologies by various partners, aimed to provide an artificial intelligence (AI) tool to aid shared decision-making by showing breast cancer patients the predicted aesthetic outcomes of their locoregional treatment. The clinical trial will evaluate the use of this tool within an AI cloud-based platform approach (CINDERELLA App) versus a standard approach. We anticipate that the CINDERELLA App will lead to improved satisfaction, psychosocial well-being and health-related QoL while maintaining the quality of care and providing environmental and economic benefits. Trial design. CINDERELLA is an international multicentric interventional randomized controlled open-label clinical trial. Using the CINDERELLA App, the AI and Digital Health arm will provide patients with complete information about the proposed types of locoregional treatments and photographs of similar patients previously treated with the same techniques. The Control arm will follow the standard approach of each clinical site. Randomization will be conducted online using the digital health platform CANKADO, ensuring a balanced distribution of participants between the two groups. CANKADO is the underlying platform through which physicians control the patients' app content and conduct all data collection. Privacy, data protection and ethical principles in AI usage were taken into account. Eligibility criteria. Patients diagnosed with primary breast cancer without evidence of systemic disease. All patients must sign an informed consent and be able to use a web-based app autonomously or with home-based support. Specific aims. Primary objective: to assess the levels of agreement among patients' expectations regarding the aesthetic outcome before and 12 months after locoregional treatment. The trial will also evaluate the aesthetic outcome level of agreement between the AI evaluation tool and self-evaluation. Secondary objectives: health-related QoL (EQ-5D-5L and BREAST-Q ICHOM questionnaires) and resource consumption (e.g., time spent in the hospital, out-of-pocket expenses). The questionnaires and photographs will be applied prior to any treatment, at wound healing, at 6 and 12 months following the completion of locoregional therapy. Statistical methods. Wilcoxon signed rank test will be used to assess the intervention's impact on the agreement level between expectations and obtained results. Weighted Cohen's kappa will be calculated to measure the improvement in classifying aesthetic results with intervention. Statistical tests and/or bootstrap techniques will compare results between arms. A similarity measure will be calculated between self-evaluation and outcome obtained with the AI tool for each participant, and a beta regression model will be used to analyze the intervention's effect. Secondary objectives will be evaluated by scoring questionnaires based on provided guidelines. Target accrual. The clinical trial, led by Champalimaud Clinical Centre, will enroll a minimum of 515 patients in each arm between July 2023 and January 2025. Recruitment is currently open at five study sites in Germany, Israel, Italy, Poland and Portugal. The clinical trial is still open for further international study sites. Funding. European Union grant HORIZON-HLTH-2021-DISEASE-04-04 Agreement No. 101057389. Citation Format: Eduard-Alexandru Bonci, Orit Kaidar-Person, Marília Antunes, Oriana Ciani, Helena Cruz, Rosa Di Micco, Oreste Davide Gentilini, Nicole Rotmensz, Pedro Gouveia, Jörg Heil, Pawel Kabata, Nuno Freitas, Tiago Gonçalves, Miguel Romariz, Helena Montenegro, Hélder P. Oliveira, Jaime S. Cardoso, Henrique Martins, Daniela Lopes, Marta Martinho, Ludovica Borsoi, Elisabetta Listorti, Carlos Mavioso, Martin Mika, André Pfob, Timo Schinköthe, Giovani Silva, Maria-Joao Cardoso. CINDERELLA Clinical Trial (NCT05196269): using artificial intelligence-driven healthcare to enhance breast cancer locoregional treatment decisions [abstract]. In: Proceedings of the 2023 San Antonio Breast Cancer Symposium; 2023 Dec 5-9; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2024;84(9 Suppl):Abstract nr PO3-19-11.

  • 5
  • 6