2016
Autores
Pereira, T; Nogueira Silva, C; Simoes, R;
Publicação
INFRARED PHYSICS & TECHNOLOGY
Abstract
Body skin temperature is a useful parameter for diagnosing diseases and infrared thermography can, be a powerful tool in providing important information to detect body temperature changes in a noninvasive way. The aim of this work was to study the pattern of skin temperature during pregnancy, to establish skin temperature reference values and to find correlations between these and the pregnant population characteristics. Sixty-one healthy pregnant women (mean age 30.6 +/- 5.1 years) in the 8th-40th gestational week with normal pregnancies were examined in 31 regions of interest (ROI). The ROIs were defined all over the body in order to determine the most influenced by factors such as age or body mass index (BMI). The results obtained in this work highlight that in normal pregnant women the skin temperature is symmetrically distributed, with the symmetrical areas differing less than 0.5 degrees C, with a mean value of 0.25 +/- 0.23 degrees C. This study identified a significant negative correlation between the BMI and temperature. Age has been shown to have great influence on the skin temperature, with a significant increase of temperature observed with age. This work explores a novel medical application of infrared thermography and provides a characterization of thermal skin profile in human pregnancy for a large set of ROIs while also evaluating the effects of age and BMI.
2016
Autores
Vaz, P; Pereira, T; Figueiras, E; Correia, C; Humeau Heurtier, A; Cardoso, J;
Publicação
BIOMEDICAL SIGNAL PROCESSING AND CONTROL
Abstract
A multi-wavelengths analysis for pulse waveform extraction using laser speckle is conducted. The proposed system consists of three coherent light sources (532 nm, 635 nm, 850 nm). A bench-test composed of a moving skin-like phantom (silicone membrane) is used to compare the results obtained from different wavelengths. The system is able to identify a skin-like phantom vibration frequency, within physiological values, with a minimum error of 0.5 mHz for the 635 nm and 850 nm wavelengths and a minimum error of 1.3 mHz for the 532 nm light wavelength using a FFT-based algorithm. The phantom velocity profile is estimated with an error ranging from 27% to 9% using a bidimensional correlation coefficient-based algorithm. An in vivo trial is also conducted, using the 532 nm and 635 nm laser sources. The 850 nm light source has not been able to extract the pulse waveform. The heart rate is identified with a minimum error of 0.48 beats per minute for the 532 nm light source and a minimal error of 1.15 beats per minute for the 635 nm light source. Our work reveals that a laser speckle-based system with a 532 nm wavelength is able to give arterial pulse waveform with better results than those given with a 635 nm laser.
2017
Autores
Pereira, T; Simoes, R;
Publicação
Thermal Imaging: Types, Advancements and Applications
Abstract
The ability to detect pathological changes early and in a non-invasive way represents important advantages in the medical field. Diagnosis should become less intrusive, more accurate and less expensive in order to implement in the clinical routine. Infrared thermography has the advantages of being non-invasive, fast, reliable, capable of producing multiple recordings in short intervals, and absolutely safe for patients and clinicians. Thermographic image (TI) came to be an extensively studied technique to quantify sensitive changes in skin temperature in relation to certain diseases: early in the pathological process (lesions, inflammation and infection) the circulation fluxes are altered and, consequently, the tissues’ temperature is reflected in thermography pattern, before structural or functional changes can be observed. This technique proved to be able to give relevant clinical information, such as breast cancer, foot disease in diabetes, rheumatoid arthritis and sports injuries. Monitoring the temperature profile of a patient will allow understanding the physiological evolution of some diseases or monitoring the pharmacologic therapy effect. However, the high cost of this technology and the small number of commercial solutions do not allow a general implementation in the clinical environmental. The future direction is the combination of this technique with the other images techniques in order to add clinical information for a more reliable diagnostic.
2023
Autores
Fonseca, J; Liu, XY; Oliveira, HP; Pereira, T;
Publicação
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE
Abstract
Background and objective: Traumatic Brain Injury (TBI) is one of the leading causes of injury-related mortality in the world, with severe cases reaching mortality rates of 30-40%. It is highly heterogeneous both in causes and consequences making more complex the medical interpretation and prognosis. Gathering clinical, demographic, and laboratory data to perform a prognosis requires time and skill in several clinical specialties. Artificial intelligence (AI) methods can take advantage of existing data by performing helpful predictions and guiding physicians toward a better prognosis and, consequently, better healthcare. The objective of this work was to develop learning models and evaluate their capability of predicting the mortality of TBI. The predictive model would allow the early assessment of the more serious cases and scarce medical resources can be pointed toward the patients who need them most. Methods: Long Short Term Memory (LSTM) and Transformer architectures were tested and compared in performance, coupled with data imbalance, missing data, and feature selection strategies. From the Medical Information Mart for Intensive Care III (MIMIC-III) dataset, a cohort of TBI patients was selected and an analysis of the first 48 hours of multiple time series sequential variables was done to predict hospital mortality. Results: The best performance was obtained with the Transformer architecture, achieving an AUC of 0.907 with the larger group of features and trained with class proportion class weights and binary cross entropy loss. Conclusions: Using the time series sequential data, LSTM and Transformers proved to be both viable options for predicting TBI hospital mortality in 48 hours after admission. Overall, using sequential deep learning models with time series data to predict TBI mortality is viable and can be used as a helpful indicator of the well-being of patients.
2023
Autores
Ribeiro, L; Oliveira, HP; Hu, X; Pereira, T;
Publicação
IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023, Istanbul, Turkiye, December 5-8, 2023
Abstract
PPG signal is a valuable resource for continuous heart rate monitoring; however, this signal suffers from artifact movements, which is particularly relevant during physical exercise and makes this biomedical signal difficult to use for heart rate detection during those activities. The purpose of this study was to develop learning models to determine heart rate using data from wearables (PPG and acceleration signals) and dealing with noise during physical exercise. Learning models based on CNNs and LSTMs were developed to predict the heart rate. The PPG signal was combined with data from accelerometers trying to overcome the noise movement on the PPG signal. Two datasets were used on this work: the 2015 IEEE Signal Processing Cup (SPC) dataset was used for training and testing, and another dataset was used for validation of the learning model (PPG-DaLiA dataset). The predictions obtained by the learning model represented a mean average error of 7.033±5.376 bpm for the SCP dataset, while a mean average error of 9.520±8.443 bpm for the validation set. The use of acceleration data increases the performance of the learning models on the prediction of the heart rate, showing the benefits of using this source of data to overcome the noise movement problem on the PPG signal. The combination of PPG signal with acceleration data could allow the learning models to use more information regarding the motion artifacts that affect the PPG and improve performance on the physiological event detections, which will largely spread the use of wearables on the healthcare applications for continuous monitor the physiological state allowing early and accurate detection of pathological events.
2023
Autores
Gomes, A; Pereira, T; Silva, F; Franco, P; Carvalho, DC; Dias, SC; Oliveira, HP;
Publicação
IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023, Istanbul, Turkiye, December 5-8, 2023
Abstract
Bone marrow edema (BME) or bone marrow lesion is the term attributed to an observed signal change within the bone marrow in magnetic resonance imaging (MRI). BME can be originated from multiple mechanisms, with pain being the main symptom. The presence of BME is an unspecific but sensitive sign with a wide differential diagnosis, that may act as a guide that leads to a systematic and correct interpretation of the magnetic resonance examination. An automatic approach for BME detection and quantification aims to reduce the overload of clinicians, decreasing human error and accelerating the time to the correct diagnosis. In this work, the bone region on the MRI slice was split into several patches and a CNN-based model was trained to detect BME in each patch from the MRI slice. The learning model developed achieved an AUC of 0.853 ± 0.056, showing that the CNN-based model can be used to detect BME in the MRI and confirming the patch strategy implemented to deal with the small data size and allowing the neural network to learn the specific information related with the classification task by reducing the region of the image to be considered. A learning model that can help clinicians with BME identification will decrease the time and the error for the diagnosis, and represent the first step for a more objective assessment of the BME. © 2023 IEEE.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.