Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Tânia Pereira

2023

A Machine Learning Approach for Predicting Microsatellite Instability using RNA-seq

Autores
Simões, M; Pereira, T; Silva, F; Machado, JMF; Oliveira, HP;

Publicação
IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023, Istanbul, Turkiye, December 5-8, 2023

Abstract
Microsatellite Instability (MSI) is an important biomarker in cancer patients, showing a defective DNA mismatch repair system. Its detection allows the use of immunotherapy to treat cancer, an approach that is revolutionizing cancer treatment. MSI is especially relevant for three types of cancer: Colon Adenocarcinoma (COAD), Stomach Adenocarcinoma (STAD), and Uterus corpus endometrial cancer (UCEC). In this work, learning algorithms were employed to predict MSI using RNA-seq data from The Cancer Genome Atlas (TCGA) database, with a focus on the selection of the most informative genomic features. The Multi-Layer Perceptron (MLP) obtained the best score (AUC = 98.44%), showing that it is possible to exploit information from RNA-seq data to find relevant relationships with the instability levels of microsatellites (MS). The accurate prediction of MSI with transcription data from cancer patients will help with the correct determination of MSI status and adequate prescription of immunotherapy, creating more precise and personalized patient care. At the genetic level, the study revealed a high expression of genes related to cell regulation functions, and a low expression of genes responsible for Mismatch Repair functions, in patients with high instability.

2023

The 2023 wearable photoplethysmography roadmap

Autores
Charlton, PH; Allen, J; Bailon, R; Baker, S; Behar, JA; Chen, F; Clifford, GD; Clifton, DA; Davies, HJ; Ding, C; Ding, XR; Dunn, J; Elgendi, M; Ferdoushi, M; Franklin, D; Gil, E; Hassan, MF; Hernesniemi, J; Hu, X; Ji, N; Khan, Y; Kontaxis, S; Korhonen, I; Kyriacou, PA; Laguna, P; Lazaro, J; Lee, CK; Levy, J; Li, YM; Liu, CY; Liu, J; Lu, L; Mandic, DP; Marozas, V; Mejía-Mejía, E; Mukkamala, R; Nitzan, M; Pereira, T; Poon, CCY; Ramella-Roman, JC; Saarinen, H; Shandhi, MMH; Shin, H; Stansby, G; Tamura, T; Vehkaoja, A; Wang, WK; Zhang, YT; Zhao, N; Zheng, DC; Zhu, TT;

Publicação
PHYSIOLOGICAL MEASUREMENT

Abstract
Photoplethysmography is a key sensing technology which is used in wearable devices such as smartwatches and fitness trackers. Currently, photoplethysmography sensors are used to monitor physiological parameters including heart rate and heart rhythm, and to track activities like sleep and exercise. Yet, wearable photoplethysmography has potential to provide much more information on health and wellbeing, which could inform clinical decision making. This Roadmap outlines directions for research and development to realise the full potential of wearable photoplethysmography. Experts discuss key topics within the areas of sensor design, signal processing, clinical applications, and research directions. Their perspectives provide valuable guidance to researchers developing wearable photoplethysmography technology.

  • 15
  • 15