Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CESE

2023

Reducing Environmental Impact Using Vehicle Route Planning

Autores
de Oliveira, LC; Pavlenko, O; Garcia, JE;

Publicação
Lecture Notes in Mechanical Engineering

Abstract
Companies focus on achieving high service levels and need to combine short service times with the dynamics between cost and quality. Their transportation systems are therefore a fundamental part; they must be reliable and efficient. This study was implemented in a company of the marine industry, and its final product has special characteristics that require special transportation, i.e., they need a truck with a special structure to be able to transport the boats. This situation causes the vehicle to return empty to the company, a route that the company must support economically. The company has already approached several options with logistic service providers (3PL) without obtaining positive solutions. It is in this sense that the present project arises, which aims to develop a tool for the creation of round-trip circuits, given that in the current context the company intends to acquire a vehicle with reduced environmental impact. In a first phase we analyze the company’s needs based on the unique characteristics of the final product, then we study the existing options on the market. Culminating in the proposal of a vehicle that allows performing a circuit in round trip (distribute the final product and return with raw material and not empty) powered by renewable energy. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

2023

Forecasting Seasonal Sales with Many Drivers: Shrinkage or Dimensionality Reduction?

Autores
Ramos, P; Oliveira, JM; Kourentzes, N; Fildes, R;

Publicação
APPLIED SYSTEM INNOVATION

Abstract
Retailers depend on accurate forecasts of product sales at the Store x SKU level to efficiently manage their inventory. Consequently, there has been increasing interest in identifying more advanced statistical techniques that lead to accuracy improvements. However, the inclusion of multiple drivers affecting demand into commonly used ARIMA and ETS models is not straightforward, particularly when many explanatory variables are available. Moreover, regularization regression models that shrink the model's parameters allow for the inclusion of a lot of relevant information but do not intrinsically handle the dynamics of the demand. These problems have not been addressed by previous studies. Nevertheless, multiple simultaneous effects interacting are common in retailing. To be successful, any approach needs to be automatic, robust and efficiently scaleable. In this study, we design novel approaches to forecast retailer product sales taking into account the main drivers which affect SKU demand at store level. To address the variable selection challenge, the use of dimensionality reduction via principal components analysis (PCA) and shrinkage estimators was investigated. The empirical results, using a case study of supermarket sales in Portugal, show that both PCA and shrinkage are useful and result in gains in forecast accuracy in the order of 10% over benchmarks while offering insights on the impact of promotions. Focusing on the promotional periods, PCA-based models perform strongly, while shrinkage estimators over-shrink. For the non-promotional periods, shrinkage estimators significantly outperform the alternatives.

2023

Investigating the Accuracy of Autoregressive Recurrent Networks Using Hierarchical Aggregation Structure-Based Data Partitioning

Autores
Oliveira, JM; Ramos, P;

Publicação
BIG DATA AND COGNITIVE COMPUTING

Abstract
Global models have been developed to tackle the challenge of forecasting sets of series that are related or share similarities, but they have not been developed for heterogeneous datasets. Various methods of partitioning by relatedness have been introduced to enhance the similarities of sets, resulting in improved forecasting accuracy but often at the cost of a reduced sample size, which could be harmful. To shed light on how the relatedness between series impacts the effectiveness of global models in real-world demand-forecasting problems, we perform an extensive empirical study using the M5 competition dataset. We examine cross-learning scenarios driven by the product hierarchy commonly employed in retail planning to allow global models to capture interdependencies across products and regions more effectively. Our findings show that global models outperform state-of-the-art local benchmarks by a considerable margin, indicating that they are not inherently more limited than local models and can handle unrelated time-series data effectively. The accuracy of data-partitioning approaches increases as the sizes of the data pools and the models' complexity decrease. However, there is a trade-off between data availability and data relatedness. Smaller data pools lead to increased similarity among time series, making it easier to capture cross-product and cross-region dependencies, but this comes at the cost of a reduced sample, which may not be beneficial. Finally, it is worth noting that the successful implementation of global models for heterogeneous datasets can significantly impact forecasting practice.

2023

Cross-Learning-Based Sales Forecasting Using Deep Learning via Partial Pooling from Multi-level Data

Autores
Oliveira, JM; Ramos, P;

Publicação
24TH INTERNATIONAL CONFERENCE ON ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EAAAI/EANN 2023

Abstract
Sales forecasts are an important tool for inventory management, allowing retailers to balance inventory levels with customer demand and market conditions. By using sales forecasts to inform inventory management decisions, companies can optimize their inventory levels and avoid costly stockouts or excess inventory costs. The scale of the forecasting problem in the retail domain is significant and requires ongoing attention and resources to ensure accurate and effective forecasting. Recent advances in machine learning algorithms such as deep learning have made possible to build more sophisticated forecasting models that can learn from large amounts of data. These global models can capture complex patterns and relationships in the data and predict demand across multiple regions and product categories. In this paper, we investigate the cross-learning scenarios, inspired by the product hierarchy frequently utilized in retail planning, which enable global models to better capture interdependencies between different products and regions. Our empirical results obtained using M5 competition dataset indicate that the cross-learning approaches exhibit significantly superior performance compared to local forecasting benchmarks. Our findings also suggest that using partial pooling at the lowest aggregation level of the retail hierarchical allows for a more effective capture of the distinct characteristics of each group.

2023

Asymmetric Wealth Effect between US Stock Markets and US Housing Market and European Stock Markets: Evidences from TAR and MTAR

Autores
Coelho, P; Gomes, L; Ramos, P;

Publicação
RISKS

Abstract
Evidence of the asymmetric wealth effect has important implications for investors and continues to merit research attention, not least because much of the evidence based on linear models has been refuted. Indeed, stock and house prices are influenced by economic activity and react non-linearly to positive/negative shocks. This problem justifies our research. The objective of this study is to examine evidence of cointegrations between the US housing and stock markets and between the US and European stock markets, given the international relevance of these exchanges. Using data from 1989:Q1 to 2020:Q2, the Threshold Autoregression model as well as the Momentum Threshold Autoregression model were calculated by combining the US Freddie, DJIA, and SPX indices and the European STOXX and FTSE indices. The results suggest a long-term equilibrium relationship with asymmetric adjustments between the housing market and the US stock markets, as well as between the DJIA, SPX, and FTSE indices. Moreover, the wealth effect is stronger when stock prices outperform house prices above an estimated threshold. This empirical evidence is useful to portfolio managers in their search for non-perfectly related markets that allow investment diversification and control risk exposure across different assets.

2023

Robust Sales forecasting Using Deep Learning with Static and Dynamic Covariates

Autores
Ramos, P; Oliveira, JM;

Publicação
APPLIED SYSTEM INNOVATION

Abstract
Retailers must have accurate sales forecasts to efficiently and effectively operate their businesses and remain competitive in the marketplace. Global forecasting models like RNNs can be a powerful tool for forecasting in retail settings, where multiple time series are often interrelated and influenced by a variety of external factors. By including covariates in a forecasting model, we can often better capture the various factors that can influence sales in a retail setting. This can help improve the accuracy of our forecasts and enable better decision making for inventory management, purchasing, and other operational decisions. In this study, we investigate how the accuracy of global forecasting models is affected by the inclusion of different potential demand covariates. To ensure the significance of the study's findings, we used the M5 forecasting competition's openly accessible and well-established dataset. The results obtained from DeepAR models trained on different combinations of features indicate that the inclusion of time-, event-, and ID-related features consistently enhances the forecast accuracy. The optimal performance is attained when all these covariates are employed together, leading to a 1.8% improvement in RMSSE and a 6.5% improvement in MASE compared to the baseline model without features. It is noteworthy that all DeepAR models, both with and without covariates, exhibit a significantly superior forecasting performance in comparison to the seasonal naive benchmark.

  • 17
  • 212