2021
Autores
Morgado, AC; Andrade, C; Teixeira, LF; Vasconcelos, MJM;
Publicação
JOURNAL OF IMAGING
Abstract
With the increasing adoption of teledermatology, there is a need to improve the automatic organization of medical records, being dermatological image modality a key filter in this process. Although there has been considerable effort in the classification of medical imaging modalities, this has not been in the field of dermatology. Moreover, as various devices are used in teledermatological consultations, image acquisition conditions may differ. In this work, two models (VGG-16 and MobileNetV2) were used to classify dermatological images from the Portuguese National Health System according to their modality. Afterwards, four incremental learning strategies were applied to these models, namely naive, elastic weight consolidation, averaged gradient episodic memory, and experience replay, enabling their adaptation to new conditions while preserving previously acquired knowledge. The evaluation considered catastrophic forgetting, accuracy, and computational cost. The MobileNetV2 trained with the experience replay strategy, with 500 images in memory, achieved a global accuracy of 86.04% with only 0.0344 of forgetting, which is 6.98% less than the second-best strategy. Regarding efficiency, this strategy took 56 s per epoch longer than the baseline and required, on average, 4554 megabytes of RAM during training. Promising results were achieved, proving the effectiveness of the proposed approach.
2021
Autores
Pinho, P; Rio Torto, I; Teixeira, LF;
Publicação
ADVANCES IN VISUAL COMPUTING (ISVC 2021), PT I
Abstract
Considerable amounts of data are required for a deep learning model to generalize to unseen cases successfully. Furthermore, such data is often manually labeled, making its annotation process costly and time-consuming. We propose using unlabeled real-world data in conjunction with automatically labeled synthetic data, obtained from simulators, to surpass the increasing need for annotated data. By obtaining real counterparts of simulated samples using CycleGAN and subsequently performing fine-tuning with such samples, we manage to improve a vehicle part's detection system performance by 2.5%, compared to the baseline exclusively trained on simulated images. We explore adding a semantic consistency loss to CycleGAN by re-utilizing previous work's trained networks to regularize the conversion process. Moreover, the addition of a post-processing step, which we denominate global NMS, highlights our approach's effectiveness by better utilizing our detection model's predictions and ultimately improving the system's performance by 14.7%.
2022
Autores
Rio-Torto, I; Cardoso, JS; Teixeira, LF;
Publicação
PATTERN RECOGNITION AND IMAGE ANALYSIS (IBPRIA 2022)
Abstract
The growing importance of the Explainable Artificial Intelligence (XAI) field has led to the proposal of several methods for producing visual heatmaps of the classification decisions of deep learning models. However, visual explanations are not sufficient because different end-users have different backgrounds and preferences. Natural language explanations (NLEs) are inherently understandable by humans and, thus, can complement visual explanations. Therefore, we introduce a novel architecture based on multimodal Transformers to enable the generation of NLEs for image classification tasks. Contrary to the current literature, which models NLE generation as a supervised image captioning problem, we propose to learn to generate these textual explanations without their direct supervision, by starting from image captions and evolving to classification-relevant text. Preliminary experiments on a novel dataset where there is a clear demarcation between captions and NLEs show the potential of the approach and shed light on how it can be improved.
2022
Autores
Rio-Torto, I; Campanico, AT; Pinho, P; Filipe, V; Teixeira, LF;
Publicação
APPLIED SCIENCES-BASEL
Abstract
The still prevalent use of paper conformity lists in the automotive industry has a serious negative impact on the performance of quality control inspectors. We propose instead a hybrid quality inspection system, where we combine automated detection with human feedback, to increase worker performance by reducing mental and physical fatigue, and the adaptability and responsiveness of the assembly line to change. The system integrates the hierarchical automatic detection of the non-conforming vehicle parts and information visualization on a wearable device to present the results to the factory worker and obtain human confirmation. Besides designing a novel 3D vehicle generator to create a digital representation of the non conformity list and to collect automatically annotated training data, we apply and aggregate in a novel way state-of-the-art domain adaptation and pseudo labeling methods to our real application scenario, in order to bridge the gap between the labeled data generated by the vehicle generator and the real unlabeled data collected on the factory floor. This methodology allows us to obtain, without any manual annotation of the real dataset, an example-based F1 score of 0.565 in an unconstrained scenario and 0.601 in a fixed camera setup (improvements of 11 and 14.6 percentage points, respectively, over a baseline trained with purely simulated data). Feedback obtained from factory workers highlighted the usefulness of the proposed solution, and showed that a truly hybrid assembly line, where machine and human work in symbiosis, increases both efficiency and accuracy in automotive quality control.
2022
Autores
Marques, M; Lourenco, CD; Teixeira, LF;
Publicação
PATTERN RECOGNITION AND IMAGE ANALYSIS (IBPRIA 2022)
Abstract
The automation of interictal epileptiform discharges through deep learning models can increase assertiveness and reduce the time spent on epilepsy diagnosis, making the process faster and more reliable. It was demonstrated that deep sequence networks can be a useful type of algorithm to effectively detect IEDs. Several different deep networks were tested, of which the best three architectures reached average AUC values of 0.96, 0.95 and 0.94, with convergence of test specificity and sensitivity values around 90%, which indicates a good ability to detect IED samples in EEG records.
2022
Autores
Pinho, AJ; Georgieva, P; Teixeira, LF; Sánchez, JA;
Publicação
IbPRIA
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.