2013
Autores
Ferreira, MS; Santos, JL; Mergo, P; Frazao, O;
Publicação
8TH IBEROAMERICAN OPTICS MEETING AND 11TH LATIN AMERICAN MEETING ON OPTICS, LASERS, AND APPLICATIONS
Abstract
A torsion active sensor based on a figure-of-eight configuration is presented. The interferometric fiber loop mirror, composed by a section of photonic crystal fiber, also acts as a sensing element. When torsion is applied over a range of 180 degrees, a sensitivity of 7.13 pm/degree is achieved. Besides, this configuration can also be used to measure optical power variations and it presents low sensitivity to temperature.
2015
Autores
Viveiros, D; Ribeiro, J; Ferreira, J; Pinto, AMR; Perez Herrera, RA; Diaz, S; Lopez Gil, A; Dominguez Lopez, A; Esteban, O; Martins, HF; Martin Lopez, S; Baierl, H; Auguste, JL; Jamier, R; Rougier, S; Santos, JL; Flores, D; Roy, P; Gonzalez Herraez, M; Lopez Amo, M; Baptista, JM;
Publicação
PROCEEDINGS OF 2015 3RD EXPERIMENT AT INTERNATIONAL CONFERENCE (EXP AT'15)
Abstract
Coal has been for centuries a central energy source to fulfill industrial and domestic needs. Its large scale extraction produced huge amount of debris that were piled in the neighboring of the mines, quite often going into combustion triggered by events like forest fires or lightning. When in this state it can continue for years, releasing substantial emissions of toxic and greenhouse gases with recognized impact in the environment and, more serious in the short term, in the life quality of the populations located nearby. Continuous monitoring of combustion temperature and emission levels of certain gases opens the possibility to plan corrective actions to minimize their negative impact. Optical fiber technology is wellsuited to this purpose and here it is described the main attributes of a fiber optic sensing system projected to gather data on distributed temperature and gas emission in these harsh environments.
2014
Autores
Silva, SF; Baierl, H; Auguste, JL; Jamier, R; Roy, P; Baptista, JM; Santos, JL; Frazao, O;
Publicação
23RD INTERNATIONAL CONFERENCE ON OPTICAL FIBRE SENSORS
Abstract
In this work, an all-fiber loop mirror using a four-bridge silica fiber with a double-Y-shaped suspended-core is presented for the measurement of strain and torsion. The sensing head is formed by a section of the microstructured fiber with 90 mm in length. The fiber loop sensor allowed observing a distinct interference pattern as a result of the geometry of the core fiber. Different sensitivities to strain and torsion were obtained, namely, -5.11 pm/mu e and +/- 1.34 pm/degree.
2015
Autores
Costa Coelho, LCC; Marques Martins de Almeida, JMMM; Moayyed, H; Santos, JL; Viegas, D;
Publicação
JOURNAL OF LIGHTWAVE TECHNOLOGY
Abstract
It is proposed the multiplexing of optical fiber-based surface plasmon resonance (SPR) sensors deployed in a ladder topology, addressed in wavelength by combining each sensor with specific fiber Bragg gratings (FBGs) and considering intensity interrogation. In each branch of the fiber layout, the FBGs are located after the sensor and the peak optical power reflected by the FBGs is a function of the relative spectral position between the SPR sensor and the FBG resonances, with the former dependent on the refractive index of the surrounding medium. The concept is tested for the multiplexing of two SPR sensors fabricated in an etched region of a single-mode fiber showing intrinsic refractive index sensitivity up to 5000 nm/RIU, which translates into a sensitivity of similar to 829 dB/RIU from the interrogation approach considered. The obtained refractive index resolution is in the order of 10(-4) RIU, and the crosstalk level between the sensors was found negligible.
2013
Autores
Coelho, TVN; Pontes, MJ; Carvalho, JP; Santos, JL; Guerreiro, A;
Publicação
OPTICS AND LASER TECHNOLOGY
Abstract
In this work, we present a method to predict the behaviour of a remote optical fiber sensor system based on a long period grating, Raman amplification and electrical interrogation were investigated. The interrogation unit is composed by two fiber Bragg gratings modulated by two piezoelectrics transductors. Optical fiber sensor systems are typically limited to operate at distances of only few kilometers due to the attenuation effects and noise that adversely affects the performance of the sensor interrogation process. We present experimental and simulation results obtained in the context of analysis of remote optical fiber sensors. The simulation models use numerical methods to compute the Raman interaction between the pumps and the sensor signals and allow speeding up the analyses regarding the setup to be experimentally implemented to measure environmental temperature. The results obtained show that under Raman amplification the power ratio between the two central wavelengths of the FBGs has a linear relation with the change of the LPG resonance induced by temperature variation.
2017
Autores
Coelho, L; Santos, JL; Jorge, PAS; de Almeida, JMM;
Publicação
2017 25TH INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS (OFS)
Abstract
A study of long period fiber gratings (LPFG) over coated with iron (Fe) and subjected to oxidation in water with different sodium chloride (NaCl) concentrations is presented. The formation of iron oxides and hydroxides was monitored in real time by following the features of the LPFG attenuation band. Preliminary results show that Fe coated LPFGs can be used as sensors for early warning of corrosion in offshore and in coastal projects where metal structures made of iron alloys are in contact with sea or brackish water.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.