Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por José Luís Santos

2010

Optical inclinometer based on fibre-taper-modal Michelson interferometer

Autores
Amaral, LMN; Frazao, O; Santos, JL; Lobo Ribeiro, ABL;

Publicação
FOURTH EUROPEAN WORKSHOP ON OPTICAL FIBRE SENSORS

Abstract
An inclinometer sensor based on optical fibre-taper-modal Michelson interferometer is demonstrated. The magnitude of the tilt (bending angle of the fibre taper interferometer) is obtained by passive interferometric interrogation based on the generation of two quadrature phase-shifted signals from two fibre Bragg gratings. Optical phase-to-rotation sensitivity of 1.13 rad/degree with a 14 mrad/root Hz resolution is achieved.

2010

Investigation of long term stability of arc-induced gratings heat treated at high temperatures

Autores
Rego, G; Caldas, P; Ivanov, O; Santos, JL;

Publicação
FOURTH EUROPEAN WORKSHOP ON OPTICAL FIBRE SENSORS

Abstract
A long-period grating written in the SMF-28 fiber was heat treated at 1000 degrees C for 15 days. The spectrum of the grating shifted to longer wavelengths and the amplitude of the cladding mode resonances decreased as a result of structural relaxation. The background loss increased considerably for time longer than 200 h, and this loss is caused by devitrification of the fiber.

2006

Development of an optic fibre sensor system for acoustic emission sensing in FRP

Autores
de Oliveira, R; Frazao, O; Santos, JL; Marques, AT;

Publicação
ADVANCED MATERIALS FORUM III, PTS 1 AND 2

Abstract
In this study an optic fibre system for health monitoring of fibre reinforced plastics was developed. It is based on the detection of acoustic emission (AE) waves in a loaded material. A low-finesse Fabry-Perot interferometer sensor is used as alternative to the conventional piezoelectric transducers for AE waves sensing. An original procedure for optical fibre sensor interrogation is proposed.

2011

Fabry-Perot cavities based on chemical etching for high temperature and strain sensing

Autores
Tafulo, PAR; Jorge, PAS; Santos, JL; Frazao, O;

Publicação
INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS

Abstract
In this paper, two novel hybrid multimode/single mode fiber Fabry-Perot (FP) cavities were compared. The cavities fabricated by chemical etching are presented as high temperature and strain sensors. In order to produce this FP cavity a single mode fiber was spliced to a graded index multimode fiber with 62.5 mu m core diameter. The multimode fiber was cut approximately 150 mu m away from the splice. Then the tip of the fiber containing the multimode fiber segment was dipped into a solution of 48% of HF during 8 minutes, creating a concavity due to the fact that the reaction between HF and the germanium doped fiber core is much faster than the reaction between HF and the pure silica cladding. By this method a concavity of approximately 100 mu m deep was created at the fiber tip. Two different FP cavities can be fabricated. The first cavity is obtained when a spliced with an identical tip concavity fiber (Sensor A) and the second is created when a tip concavity is spliced to a single mode fiber (Sensor B). The Fabry-Perot cavities were tested as a high temperature sensor in the range between room temperature and 800 degrees C and as strain sensors. A reversible shift of the interferometric peaks with temperature allowed to estimate a sensitivity of 0.75 +/- 0.03 pm/degrees C and 0.98 +/- 0.04 pm/degrees C for the sensor A and B respectively. For strain measurement sensor A demonstrated a sensitivity of 1.85 +/- 0.07 pm/mu epsilon and sensor B showed a sensitivity of 3.14 +/- 0.05 pm/mu epsilon. The sensors demonstrated the feasibility of low cost fiber optic sensors for high temperature and strain.

2011

A Simple Interrogation Technique for Refractive Index Measurement using Multimode Interference Structure

Autores
Silva, S; Frazao, O; Santos, JL; Malcata, FX;

Publicação
INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS

Abstract
A simple interrogation technique for refractive index measurement is proposed, using a multimode interference-based fiber tip structure. The fiber probe is a section of a multimode fiber, spliced to a single-mode fiber and interrogated in reflection. The interrogation technique uses two fiber Bragg gratings as discrete optical sources; by means of relative intensity variation of the reflected signals, those sources will provide a measurement of refractive index changes, while taking advantage of the MMI-based fiber tip. The read-out system uses a WDM and two photodetectors to separate both signals. A sensitivity of -5.87/RIU, in the refractive index range 1.30-1.38, was achieved with the proposed configuration.

2011

High-Birefringent Fiber Loop Mirror with an Output Port Probe for Sensing Applications

Autores
Frazao, O; Silva, RM; Santos, JL;

Publicação
21ST INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS

Abstract
Two new configurations of high-birefringent fiber loop mirror with an output port probe are proposed. The two configurations used two couplers spliced between them with unbalanced arms and one output port is used as the probe sensor. The difference between them is that the section length of high-birefringent fiber is located between the two couplers (first configuration) or spliced in the output port probe (second configuration). The first new configuration is studied as an optical refractometer and the second configuration is analyzed when the strain and temperature are applied.

  • 68
  • 82