Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Marco Amaro Oliveira

2023

A Comparison of Point Set Registration Algorithms for Quantification of Change in Spatiotemporal Data

Autores
Gomes M.; De Carvalho A.V.; Oliveira M.A.; Carneiro E.;

Publicação
Iberian Conference on Information Systems and Technologies, CISTI

Abstract
Point Set Registration (PSR) algorithms have very different underlying theoretical models to define a process that calculates the alignment solution between two point clouds. The selection of a particular PSR algorithm can be based on the efficiency (time to compute the alignment) and accuracy (a measure of error using the estimated alignment). In our specific context, previous work used a CPD algorithm to detect and quantify change in spatiotemporal datasets composed of moving and shape-changing objects represented by a sequence of time stamped 2D polygon boundaries. Though the results were promising, we question if the selection of a particular PSR algorithm influences the results of detection and quantification of change. In this work we review and compare several PSR algorithms, characterize test datasets and used metrics, and perform tests for the selected datasets. The results show pyCPD and cyCPD implementations of CPD to be good alternatives and that BCPD can have potential to be yet another alternative. The results also show that detection and quantification accuracy change for some of the tested PSR implementations.

  • 3
  • 3