Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Hélio Cristiano Castro

2024

Digital Factory for Product Customization: A Proposal for a Decentralized Production System

Autores
Castro H.; Câmara F.; Câmara E.; Ávila P.;

Publicação
Lecture Notes in Mechanical Engineering

Abstract
The digitalization and evolution of information technologies within the industry 4.0 have allowed the creation of the virtual model of the production system, called Digital Twin, with the capacity to simulate different scenarios, providing support for better decision-making. This tool not only represents a virtual copy of the physical world that obtains information about the state of the value chain but also illustrates a system capable of changing the development of productive activity towards personalized production, extending product versatility. Decentralized production seeks to respond to these needs because it allows the agglomeration of several services with different geographic locations, promoting the sharing of resources. This paper proposes an architecture for the development of a digital platform of personalization and decentralization of production based on sharing of sustainable resources. With a single tool, it is possible to define the entire production line for a product.

2024

Development and Analysis of Predictive Models for Industry 4.0 with an Open-Source Tool

Autores
Castro H.; Câmara E.; Câmara F.; Ávila P.;

Publicação
Lecture Notes in Mechanical Engineering

Abstract
Industry 4.0 brought modernization to the productive system through the network integration of the constituent entities that, combined with the evolution of information technologies, allowed an increase in productivity, product quality, production cost optimization, and product customization to customer needs. In this paper a model was created using the open-source tool Knime that, based on a set of data provided by Bosch, parameterized the model with several pre-processing techniques, resource selection, and minimization of over-fitting, allowing the development of a final improved model for internal product failure prediction at Bosch production line. The study shows that model efficiency improved with the application of resource selection and reduction techniques, with Logistic Regression and PCA resource selection techniques standing out, obtaining a Recall of 100% and precision and accuracy, both with 99.43%.

2024

Energy and Circular Economy: Nexus beyond Concepts

Autores
Martins, FF; Castro, H; Smitková, M; Felgueiras, C; Caetano, N;

Publicação
SUSTAINABILITY

Abstract
Energy and materials are increasingly important in industrialized countries, and they impact the economy, sustainability, and people's future. The purpose of this work was to study the relationship between energy and the circular economy using methods such as Pearson's correlation and a principal component analysis. Thus, 12 strong correlations were found, with 5 of them between the following relevant variables from two different subjects: the correlations of the raw material consumption, the domestic material consumption, and the material import dependency with the final energy consumption in transport (0.81, 0.92, and 0.81); the correlation of the circular material use rate with the final energy consumption in households (0.70); and the correlation of the material import dependency with the final energy consumption in industry (0.89). The time series forecast was only conclusive for the waste generated, showing that it will increase in the next 10 years.

2024

Product Customization based on Digital Twin and Cloud Manufacturing within a Decentralized Production System

Autores
Castro, H; Camara, F; Avila, P; Ferreira, L; Cruz Cunha, M;

Publicação
Procedia Computer Science

Abstract
Industry 4.0 represents a turning point in the thinking of the production model since it is based on digitalized production systems with the aim of improving productivity, product quality, and delivery time to the customer. The digitalization and evolution of information technology allowed the emulation of production system virtual models, namely in the concept of Digital Twin (DT), with the ability to simulate different scenarios providing support for better decision making. This concept not only represents a virtual copy of the physical world that obtains information about the state of the value chain but also illustrates a system capable of changing the development of the production activity according to the fulfillment of the intended business goals. In literature, the concept of the Digital Twin is exhaustively treated as a stand-alone factory (one digital factory represents one physical factory) and underestimates the possibility of a DT oriented to a customized product (a project) that requires decentralized production systems. This paper brings to discussion the relevance of product customized applying DT to smart customization, and the inclusion of decentralized production systems supported by Cloud Manufacturing. © 2024 The Author(s). Published by Elsevier B.V.

2024

Artificial Intelligence Models: A literature review addressing Industry 4.0 approach

Autores
Castro, H; Camara, E; Avila, P; Cruz Cunha, M; Ferreira, L;

Publicação
Procedia Computer Science

Abstract
Industry 4.0 has brought modernization to the production system through the network integration of the constituent entities which, combined with the evolution of information technology, has enabled an increase in productivity, product quality, optimization of production costs, and product customization to customer needs. Despite the complexity of human thought, artificial intelligence tries to replicate it in algorithms, creating models capable of processing databases with a high volume of information, and generating valuable information for decision making. Within this area, there are subfields, such as Machine Learning and Deep Learning, which, through mathematical models, define patterns to predict output data from known input data. In addition to this type of algorithm, there are metaheuristic models capable of optimizing the parameters required in Machine Learning and Deep Learning algorithms. These intelligent systems have applications in various areas such as industry, construction, health, logistics processes, and maintenance management, among others. This paper focuses on Artificial Intelligence models addressing Industry 4.0 approach. © 2024 The Author(s). Published by Elsevier B.V.

2024

An analysis of Open Data Scoring System towards Data Science for Sustainability in Industry 4.0

Autores
Castro, H; Costa, F; Ferreira, T; Avila, P; Cruz Cunha, M; Ferreira, L; Putnik, D; Bastos, J;

Publicação
Procedia Computer Science

Abstract
In a society based on data-driven, data inclusion and data access play a significant role in societal development. A called democratization of data through open access, Open Data, must be nurtured by countries to empower their citizens, entrepreneurs, companies, industries, academics, and organizations, in general. Open Data Scoring System is an evaluation system that ranks countries in 22 categories of openness in data, divided into the 3 pillars of sustainability. In this paper, we will present the importance of Industry 4.0 and its relation to sustainability and the role of Data Science in Industry 4.0 assuming an Open Design approach. Then, an analysis is made considering the Gross Domestic Product (GDP) of the most relevant countries worldwide, the USA and China, concerning the six (6) higher ranked categories of openness data of these countries, supported by the Open Data Scoring System from 2015 to 2020. Our findings reveal that in the USA and China the main categories are seven (7), five (5), and 2 (two) categories of economic, social, and environmental sustainability, respectively. Through a correlations and co-occurrences analysis of the open data scoring worldwide reveals that the most significant categories are four (4) economic, one (1) social, and two (2) environmental. © 2024 The Author(s). Published by Elsevier B.V.

  • 8
  • 9