2013
Autores
Andre, RM; Silva, SO; Becker, M; Schuster, K; Rothardt, M; Bartelt, H; Marques, MB; Frazao, O;
Publicação
Photonic Sensors
Abstract
Suspended core fiber tapers with different cross sections (with diameters from 70 µm to 120 µm) are produced by filament heating. Before obtaining the taper, the spectral behavior of the suspended core fiber is a multimode interference structure. When the taper is made, an intermodal interference between a few modes is observed. This effect is clearly visible for low taper core dimensions. Since the core and cladding do not collapse, two taper regions exist, one in the core and the other in the cladding. The cladding taper does not affect the light transmission, only the core is reduced to a microtaper. The spectral response of the microtaper based-suspended core fiber is similar to a beat of two interferometers. The strain is applied to the microtaper, and with the reduction in the transverse area, an increase in sensitivity is observed. When the taper is immersed in a liquid with a different index of refraction or subjected to temperature variations, no spectral change occurs. © 2012 The Author(s).
2013
Autores
Passos, DJ; Marques, MJ; Frazao, O;
Publicação
OPTICS LETTERS
Abstract
An intensity-based highly birefringent (Hi-Bi) fiber loop mirror (FLM) sensor is proposed which uses a wavelength-division multiplexing (WDM) fiber coupler. The effect of integrating the WDM coupler in a FLM configuration is first studied. A section of Hi-Bi (bow-tie) fiber of length 0.26 m is then placed in the fiber loop, making the spectral response of the device simultaneously dependent on the Hi-Bi fiber section and WDM coupler characteristics. When strain is applied to the sensing head, the spectral signal is modulated in amplitude, in contrast with the conventional Hi-Bi FLM sensors in which there are wavelength shifts. The sensor was characterized in strain and a sensitivity of (-2.2 +/- 0.4) x 10(-3) mu epsilon(-1) for a range of 300 mu epsilon was attained. The self-referenced character of the sensor is noted. (C) 2013 Optical Society of America
2013
Autores
Andre, RM; Marques, MB; Mergo, P; Frazao, O;
Publicação
Optics InfoBase Conference Papers
Abstract
Two interferometers were proposed with different types of twin core fiber. Both are characterized in temperature and the topology based on photonic crystal fiber presents higher sensitivity. © OSA 2013.
2016
Autores
Andre, RM; Warren Smith, SC; Becker, M; Dellith, J; Rothhardt, M; Zibaii, MI; Latifi, H; Marques, MB; Bartelt, H; Frazao, O;
Publicação
OPTICS EXPRESS
Abstract
Optical fiber micro-tips are promising devices for sensing applications in small volume and difficult to access locations, such as biological and biomedical settings. The tapered fiber tips are prepared by dynamic chemical etching, reducing the size from 125 mu m to just a few mu m. Focused ion beam milling is then used to create cavity structures on the tapered fiber tips. Two different Fabry-Perot micro-cavities have been prepared and characterized: a solid silica cavity created by milling two thin slots and a gap cavity. A third multi-cavity structure is fabricated by combining the concepts of solid silica cavity and gap cavity. This micro-tip structure is analyzed using a fast Fourier transform method to demultiplex the signals of each cavity. Simultaneous measurement of temperature and external refractive index is then demonstrated, presenting sensitivities of 15.8 pm/K and -1316 nm/RIU, respectively. (C) 2016 Optical Society of America
2016
Autores
Andre, RM; Warren Smith, SC; Becker, M; Dellith, J; Rothhardt, M; Zibaii, MI; Latifi, H; Marques, MB; Bartelt, H; Frazao, O;
Publicação
NANOENGINEERING: FABRICATION, PROPERTIES, OPTICS, AND DEVICES XIII
Abstract
Focused ion beam technology is combined with dynamic chemical etching to create microcavities in tapered optical fiber tips, resulting in fiber probes for temperature and refractive index sensing. Dynamic chemical etching uses hydrofluoric acid and a syringe pump to etch standard optical fibers into cone structures called tapered fiber tips where the length, shape, and cone angle can be precisely controlled. On these tips, focused ion beam is used to mill several different types of Fabry-Perot microcavities. Two main cavity types are initially compared and then combined to form a third, complex cavity structure. In the first case, a gap is milled on the tapered fiber tip which allows the external medium to penetrate the light guiding region and thus presents sensitivity to external refractive index changes. In the second, two slots that function as mirrors are milled on the tip creating a silica cavity that is only sensitive to temperature changes. Finally, both cavities are combined on a single tapered fiber tip, resulting in a multi-cavity structure capable of discriminating between temperature and refractive index variations. This dual characterization is performed with the aid of a fast Fourier transform method to separate the contributions of each cavity and thus of temperature and refractive index. Ultimately, a tapered optical fiber tip probe with sub-standard dimensions containing a multi-cavity structure is projected, fabricated, characterized and applied as a sensing element for simultaneous temperature and refractive index discrimination.
2016
Autores
Martins, TJM; Marques, MB; Roy, P; Jamier, R; Fevrier, S; Frazao, O;
Publicação
SIXTH EUROPEAN WORKSHOP ON OPTICAL FIBRE SENSORS
Abstract
Temperature-independent strain measurement is achieved resorting to a taper fabricated on a Bragg fibre using a CO2 laser. The characteristic bimodal interference of an untapered Bragg fibre is rendered multimode after taper fabrication and the resulting transmission spectra are analysed as temperature and strain change. The intrinsic strain sensitivity exhibited by the Bragg fibre is increased 15 fold after tapering and reaches 22.68 pm/mu epsilon. The difference in wavelength shift promoted by variations in temperature and strain for the two fringes studied is examined and strain sensing with little temperature sensitivity is achieved, presenting a sensitivity of 2.86 pm/mu epsilon, for strain values up to 400 mu epsilon.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.