Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Maria Eduarda Silva

2009

PARAMETER ESTIMATION FOR INAR PROCESSES BASED ON HIGH-ORDER STATISTICS

Autores
Silva, I; Silva, ME;

Publicação
REVSTAT-STATISTICAL JOURNAL

Abstract
The high-order statistics (moments and cumulants of order higher than two) have been widely applied in several fields, specially in problems where it is conjectured a lack of Gaussianity and/or non-linearity. Since the INteger-valued AutoRegressive, INAR, processes are non-Gaussian, the high-order statistics can provide additional information that allows a better characterization of these processes. Thus, an estimation method for the parameters of an INAR process, based on Least Squares for the third-order moments is proposed. The results of a Monte Carlo study to investigate the performance of the estimator are presented and the method is applied to a set of real data.

2008

ESTIMATION AND FORECASTING IN SUINAR(1) MODEL

Autores
Silva, N; Pereira, I; Silva, ME;

Publicação
REVSTAT-STATISTICAL JOURNAL

Abstract
This work considers a generalization of the INAR(1) model to the panel data first order Seemingly Unrelated INteger AutoRegressive Poisson model, SUINAR(1). It presents Bayesian and classical methodologies to estimate the parameters of Poisson SUINAR(1) model and to forecast future observations of the process. In particular, prediction intervals for forecasts - classical approach - and HPD prediction intervals - Bayesian approach - are derived. A simulation study is provided to give additional insight into the finite sample behaviour of the parameter estimates and forecasts.

2009

FORECASTING IN INAR(1) MODEL

Autores
Silva, N; Pereira, I; Silva, ME;

Publicação
REVSTAT-STATISTICAL JOURNAL

Abstract
In this work we consider the problem of forecasting integer-valued time series, modelled by the INAR(1) process introduced by McKenzie (1985) and Al-Osh and Alzaid (1987). The theoretical properties and practical applications of INAR and related processes have been discussed extensively in the literature but there is still some discussion on the problem of producing coherent, i.e. integer-valued, predictions. Here Bayesian methodology is used to obtain point predictions as well as confidence intervals for future values of the process. The predictions thus obtained are compared with their classic counterparts. The proposed approaches are illustrated with a simulation study and a real example.

2007

Radon variability at the Elat granite, Israel: Heteroscedasticity and nonlinearity

Autores
Barbosa, SM; Steinitz, G; Piatibratova, O; Silva, ME; Lago, P;

Publicação
GEOPHYSICAL RESEARCH LETTERS

Abstract
The basic statistical features of radon time series from continuous radon monitoring at the Elat granite, Israel are analysed. A similar analysis is carried out for ancillary and possibly related geophysical parameters for the Elat area. The results show that air temperature, precipitable water and longwave radiation time series exhibit constant variance over the analyzed period, while radon time series, atmospheric pressure, short-wave radiation and total electron content exhibit heteroscedasticity. Furthermore, for radon and shortwave radiation the variability is associated with the overall mean level, while for atmospheric pressure such an association is not present. The analyzed radon time series not only are non-stationary but also nonlinear, reflecting the complex dynamics of radon emanation and transport in natural subsurface systems.

2009

Deterministic versus stochastic trends: Detection and challenges

Autores
Fatichi, S; Barbosa, SM; Caporali, E; Silva, ME;

Publicação
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES

Abstract
The detection of a trend in a time series and the evaluation of its magnitude and statistical significance is an important task in geophysical research. This importance is amplified in climate change contexts, since trends are often used to characterize long-term climate variability and to quantify the magnitude and the statistical significance of changes in climate time series, both at global and local scales. Recent studies have demonstrated that the stochastic behavior of a time series can change the statistical significance of a trend, especially if the time series exhibits long-range dependence. The present study examines the trends in time series of daily average temperature recorded in 26 stations in the Tuscany region (Italy). In this study a new framework for trend detection is proposed. First two parametric statistical tests, the Phillips-Perron test and the Kwiatkowski-Phillips-Schmidt-Shin test, are applied in order to test for trend stationary and difference stationary behavior in the temperature time series. Then long-range dependence is assessed using different approaches, including wavelet analysis, heuristic methods and by fitting fractionally integrated autoregressive moving average models. The trend detection results are further compared with the results obtained using nonparametric trend detection methods: Mann-Kendall, Cox-Stuart and Spearman's rho tests. This study confirms an increase in uncertainty when pronounced stochastic behaviors are present in the data. Nevertheless, for approximately one third of the analyzed records, the stochastic behavior itself cannot explain the long-term features of the time series, and a deterministic positive trend is the most likely explanation.

2008

Time series analysis of sea-level records: Characterising long-term variability

Autores
Barbosa, SM; Silva, ME; Fernandes, MJ;

Publicação
Lecture Notes in Earth Sciences

Abstract
The characterisation and quantification of long-term sea-level variability is of considerable interest in a climate change context. Long time series from coastal tide gauges are particularly appropriate for this purpose. Long-term variability in tide gauge records is usually expressed through the linear slope resulting from the fit of a linear model to the time series, thus assuming that the generating process is deterministic with a short memory component. However, this assumption needs to be tested, since trend features can also be due to non-deterministic processes such as random walk or long range dependent processes, or even be driven by a combination of deterministic and stochastic processes. Specific methodology is therefore required to distinguish between a deterministic trend and stochastically-driven trend-like features in a time series. In this chapter, long-term sea-level variability is characterised through the application of (i) parametric statistical tests for stationarity, (ii) wavelet analysis for assessing scaling features, and (iii) generalised least squares for estimating deterministic trends. The results presented here for long tide gauge records in the North Atlantic show, despite some local coherency, profound differences in terms of the low frequency structure of these sea-level time series. These differences suggest that the long-term variations are reflecting mainly local/regional phenomena. © 2008 Springer-Verlag Berlin Heidelberg.

  • 6
  • 13