2023
Autores
Oliveira, HS; Oliveira, HP;
Publicação
SENSORS
Abstract
Forecasting energy consumption models allow for improvements in building performance and reduce energy consumption. Energy efficiency has become a pressing concern in recent years due to the increasing energy demand and concerns over climate change. This paper addresses the energy consumption forecast as a crucial ingredient in the technology to optimize building system operations and identifies energy efficiency upgrades. The work proposes a modified multi-head transformer model focused on multi-variable time series through a learnable weighting feature attention matrix to combine all input variables and forecast building energy consumption properly. The proposed multivariate transformer-based model is compared with two other recurrent neural network models, showing a robust performance while exhibiting a lower mean absolute percentage error. Overall, this paper highlights the superior performance of the modified transformer-based model for the energy consumption forecast in a multivariate step, allowing it to be incorporated in future forecasting tasks, allowing for the tracing of future energy consumption scenarios according to the current building usage, playing a significant role in creating a more sustainable and energy-efficient building usage.
2023
Autores
Oliveira, HS; Ribeiro, PP; Oliveira, HP;
Publicação
Pattern Recognition and Image Analysis - 11th Iberian Conference, IbPRIA 2023, Alicante, Spain, June 27-30, 2023, Proceedings
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.