Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Tiago Manuel Campelos

2018

Decision Support for Negotiations among Microgrids Using a Multiagent Architecture

Autores
Pinto, T; Ghazvini, MAF; Soares, J; Faia, R; Corchado, JM; Castro, R; Vale, Z;

Publicação
ENERGIES

Abstract
This paper presents a decision support model for negotiation portfolio optimization considering the participation of players in local markets (at the microgrid level) and in external markets, namely in regional markets, wholesale negotiations and negotiations of bilateral agreements. A local internal market model for microgrids is defined, and the connection between interconnected microgrids is based on nodal pricing to enable negotiations between nearby microgrids. The market environment considering the local market setting and the interaction between integrated microgrids is modeled using a multi-agent approach. Several multi-agent systems are used to model the electricity market environment, the interaction between small players at a microgrid scale, and to accommodate the decision support features. The integration of the proposed models in this multi-agent society and interaction between these distinct specific multi-agent systems enables modeling the system as a whole and thus testing and validating the impact of the method in the outcomes of the involved players. Results show that considering the several negotiation opportunities as complementary and making use of the most appropriate markets depending on the expected prices at each moment allows players to achieve more profitable results.

2021

Extending a Trust model for Energy Trading with Cyber-Attack Detection

Autores
Andrade, R; Wannous, S; Pinto, T; Praca, I;

Publicação
ELECTRONICS

Abstract
This paper explores the concept of the local energy markets and, in particular, the need for trust and security in the negotiations necessary for this type of market. A multi-agent system is implemented to simulate the local energy market, and a trust model is proposed to evaluate the proposals sent by the participants, based on forecasting mechanisms that try to predict their expected behavior. A cyber-attack detection model is also implemented using several supervised classification techniques. Two case studies were carried out, one to evaluate the performance of the various classification methods using the IoT-23 cyber-attack dataset; and another one to evaluate the performance of the developed trust mode.

2021

Ontologies to Enable Interoperability of Multi-Agent Electricity Markets Simulation and Decision Support

Autores
Santos, G; Pinto, T; Vale, Z;

Publicação
ELECTRONICS

Abstract
This paper presents the AiD-EM Ontology, which provides a semantic representation of the concepts required to enable the interoperability between multi-agent-based decision support systems, namely AiD-EM, and the market agents that participate in electricity market simulations. Electricity markets' constant changes, brought about by the increasing necessity for adequate integration of renewable energy sources, make them complex and dynamic environments with very particular characteristics. Several modeling tools directed at the study and decision support in the scope of the restructured wholesale electricity markets have emerged. However, a common limitation is identified: the lack of interoperability between the various systems. This gap makes it impossible to exchange information and knowledge between them, test different market models, enable players from heterogeneous systems to interact in common market environments, and take full advantage of decision support tools. To overcome this gap, this paper presents the AiD-EM Ontology, which includes the necessary concepts related to the AiD-EM multi-agent decision support system, to enable interoperability with easier cooperation and adequate communication between AiD-EM and simulated market agents wishing to take advantage of this decision support tool.

2018

Multi-Agent Decision Support Tool to Enable Interoperability among Heterogeneous Energy Systems

Autores
Teixeira, B; Pinto, T; Silva, F; Santos, G; Praca, I; Vale, Z;

Publicação
APPLIED SCIENCES-BASEL

Abstract
Worldwide electricity markets are undergoing a major restructuring process. One of the main reasons for the ongoing changes is to enable the adaptation of current market models to the new paradigm that arises from the large-scale integration of distributed generation sources. In order to deal with the unpredictability caused by the intermittent nature of the distributed generation and the large number of variables that contribute to the energy sector balance, it is extremely important to use simulation systems that are capable of dealing with the required complexity. This paper presents the Tools Control Center (TOOCC), a framework that allows the interoperability between heterogeneous energy and power simulation systems through the use of ontologies, allowing the simulation of scenarios with a high degree of complexity, through the cooperation of the individual capacities of each system. A case study based on real data is presented in order to demonstrate the interoperability capabilities of TOOCC. The simulation considers the energy management of a microgrid of a real university campus, from the perspective of the network manager and also of its consumers/producers, in a projection for a typical day of the winter of 2050.

2020

Solar Thermal Collector Output Temperature Prediction by Hybrid Intelligent Model for Smartgrid and Smartbuildings Applications and Optimization

Autores
Casteleiro-Roca, J; Chamoso, P; Jove, E; González-Briones, A; Quintián, H; Fernández-Ibáñez, M; Vega Vega, RA; Piñón Pazos, A; López Vázquez, JA; Torres-Álvarez, S; Pinto, T; Calvo-Rolle, JL;

Publicação
Applied Sciences

Abstract
Currently, there is great interest in reducing the consumption of fossil fuels (and other non-renewable energy sources) in order to preserve the environment; smart buildings are commonly proposed for this purpose as they are capable of producing their own energy and using it optimally. However, at times, solar energy is not able to supply the energy demand fully; it is mandatory to know the quantity of energy needed to optimize the system. This research focuses on the prediction of output temperature from a solar thermal collector. The aim is to measure solar thermal energy and optimize the energy system of a house (or building). The dataset used in this research has been taken from a real installation in a bio-climate house located on the Sotavento Experimental Wind Farm, in north-west Spain. A hybrid intelligent model has been developed by combining clustering and regression methods such as neural networks, polynomial regression, and support vector machines. The main findings show that, by dividing the dataset into small clusters on the basis of similarity in behavior, it is possible to create more accurate models. Moreover, combining different regression methods for each cluster provides better results than when a global model of the whole dataset is used. In temperature prediction, mean absolute error was lower than 4 ° C.

2014

Adaptive learning in agents behaviour: A framework for electricity markets simulation

Autores
Pinto, T; Vale, Z; Sousa, TM; Praca, I; Santos, G; Morais, H;

Publicação
INTEGRATED COMPUTER-AIDED ENGINEERING

Abstract
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multiagent electricity market simulator that models market players and simulates their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. This paper presents a methodology to provide decision support to electricity market negotiating players. This model allows integrating different strategic approaches for electricity market negotiations, and choosing the most appropriate one at each time, for each different negotiation context. This methodology is integrated in ALBidS (Adaptive Learning strategic Bidding System) - a multiagent system that provides decision support to MASCEM's negotiating agents so that they can properly achieve their goals. ALBidS uses artificial intelligence methodologies and data analysis algorithms to provide effective adaptive learning capabilities to such negotiating entities. The main contribution is provided by a methodology that combines several distinct strategies to build actions proposals, so that the best can be chosen at each time, depending on the context and simulation circumstances. The choosing process includes reinforcement learning algorithms, a mechanism for negotiating contexts analysis, a mechanism for the management of the efficiency/effectiveness balance of the system, and a mechanism for competitor players' profiles definition.

  • 23
  • 61