2018
Autores
Pinto, T; Ghazvini, MAF; Soares, J; Faia, R; Corchado, JM; Castro, R; Vale, Z;
Publicação
ENERGIES
Abstract
This paper presents a decision support model for negotiation portfolio optimization considering the participation of players in local markets (at the microgrid level) and in external markets, namely in regional markets, wholesale negotiations and negotiations of bilateral agreements. A local internal market model for microgrids is defined, and the connection between interconnected microgrids is based on nodal pricing to enable negotiations between nearby microgrids. The market environment considering the local market setting and the interaction between integrated microgrids is modeled using a multi-agent approach. Several multi-agent systems are used to model the electricity market environment, the interaction between small players at a microgrid scale, and to accommodate the decision support features. The integration of the proposed models in this multi-agent society and interaction between these distinct specific multi-agent systems enables modeling the system as a whole and thus testing and validating the impact of the method in the outcomes of the involved players. Results show that considering the several negotiation opportunities as complementary and making use of the most appropriate markets depending on the expected prices at each moment allows players to achieve more profitable results.
2021
Autores
Andrade, R; Wannous, S; Pinto, T; Praca, I;
Publicação
ELECTRONICS
Abstract
This paper explores the concept of the local energy markets and, in particular, the need for trust and security in the negotiations necessary for this type of market. A multi-agent system is implemented to simulate the local energy market, and a trust model is proposed to evaluate the proposals sent by the participants, based on forecasting mechanisms that try to predict their expected behavior. A cyber-attack detection model is also implemented using several supervised classification techniques. Two case studies were carried out, one to evaluate the performance of the various classification methods using the IoT-23 cyber-attack dataset; and another one to evaluate the performance of the developed trust mode.
2021
Autores
Santos, G; Pinto, T; Vale, Z;
Publicação
ELECTRONICS
Abstract
This paper presents the AiD-EM Ontology, which provides a semantic representation of the concepts required to enable the interoperability between multi-agent-based decision support systems, namely AiD-EM, and the market agents that participate in electricity market simulations. Electricity markets' constant changes, brought about by the increasing necessity for adequate integration of renewable energy sources, make them complex and dynamic environments with very particular characteristics. Several modeling tools directed at the study and decision support in the scope of the restructured wholesale electricity markets have emerged. However, a common limitation is identified: the lack of interoperability between the various systems. This gap makes it impossible to exchange information and knowledge between them, test different market models, enable players from heterogeneous systems to interact in common market environments, and take full advantage of decision support tools. To overcome this gap, this paper presents the AiD-EM Ontology, which includes the necessary concepts related to the AiD-EM multi-agent decision support system, to enable interoperability with easier cooperation and adequate communication between AiD-EM and simulated market agents wishing to take advantage of this decision support tool.
2018
Autores
Teixeira, B; Pinto, T; Silva, F; Santos, G; Praca, I; Vale, Z;
Publicação
APPLIED SCIENCES-BASEL
Abstract
Worldwide electricity markets are undergoing a major restructuring process. One of the main reasons for the ongoing changes is to enable the adaptation of current market models to the new paradigm that arises from the large-scale integration of distributed generation sources. In order to deal with the unpredictability caused by the intermittent nature of the distributed generation and the large number of variables that contribute to the energy sector balance, it is extremely important to use simulation systems that are capable of dealing with the required complexity. This paper presents the Tools Control Center (TOOCC), a framework that allows the interoperability between heterogeneous energy and power simulation systems through the use of ontologies, allowing the simulation of scenarios with a high degree of complexity, through the cooperation of the individual capacities of each system. A case study based on real data is presented in order to demonstrate the interoperability capabilities of TOOCC. The simulation considers the energy management of a microgrid of a real university campus, from the perspective of the network manager and also of its consumers/producers, in a projection for a typical day of the winter of 2050.
2020
Autores
Casteleiro-Roca, J; Chamoso, P; Jove, E; González-Briones, A; Quintián, H; Fernández-Ibáñez, M; Vega Vega, RA; Piñón Pazos, A; López Vázquez, JA; Torres-Álvarez, S; Pinto, T; Calvo-Rolle, JL;
Publicação
Applied Sciences
Abstract
2014
Autores
Pinto, T; Vale, Z; Sousa, TM; Praca, I; Santos, G; Morais, H;
Publicação
INTEGRATED COMPUTER-AIDED ENGINEERING
Abstract
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multiagent electricity market simulator that models market players and simulates their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. This paper presents a methodology to provide decision support to electricity market negotiating players. This model allows integrating different strategic approaches for electricity market negotiations, and choosing the most appropriate one at each time, for each different negotiation context. This methodology is integrated in ALBidS (Adaptive Learning strategic Bidding System) - a multiagent system that provides decision support to MASCEM's negotiating agents so that they can properly achieve their goals. ALBidS uses artificial intelligence methodologies and data analysis algorithms to provide effective adaptive learning capabilities to such negotiating entities. The main contribution is provided by a methodology that combines several distinct strategies to build actions proposals, so that the best can be chosen at each time, depending on the context and simulation circumstances. The choosing process includes reinforcement learning algorithms, a mechanism for negotiating contexts analysis, a mechanism for the management of the efficiency/effectiveness balance of the system, and a mechanism for competitor players' profiles definition.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.