Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Tiago Manuel Campelos

2016

Metalearning to support competitive electricity market players' strategic bidding

Autores
Pinto T.; Sousa T.; Morais H.; Praça I.; Vale Z.;

Publicação
Electric Power Systems Research

Abstract
Electricity markets are becoming more competitive, to some extent due to the increasing number of players that have moved from other sectors to the power industry. This is essentially resulting from incentives provided to distributed generation. Relevant changes in this domain are still occurring, such as the extension of national and regional markets to continental scales. Decision support tools have thereby become essential to help electricity market players in their negotiation process. This paper presents a metalearner to support electricity market players in bidding definition. The proposed metalearner uses a dynamic artificial neural network to create its own output, taking advantage on several learning algorithms already implemented in ALBidS (Adaptive Learning strategic Bidding System). The proposed metalearner considers different weights for each strategy, based on their individual performance. The metalearner's performance is analysed in scenarios based on real electricity markets data using MASCEM (Multi-Agent Simulator for Competitive Electricity Markets). Results show that the proposed metalearner is able to provide higher profits to market players when compared to other current methodologies and that results improve over time, as consequence of its learning process.

2009

Multi-agent based electricity market simulator with VPP: Conceptual and implementation issues

Autores
Pinto, T; Vale, ZA; Morais, H; Praca, I; Ramos, C;

Publicação
2009 IEEE Power and Energy Society General Meeting, PES '09

Abstract
This paper presents a new architecture for MASCEM, a multi-agent electricity market simulator. The main focus is the MASCEM ability to provide the means to model and simulate Virtual Power Producers (VPP). VPPs are represented as a coalition of agents, with specific characteristics and goals. VPPs can reinforce the importance of distributed generation technologies, mainly based on renewable energy sources, making them valuable in electricity markets. The new features are implemented in Prolog which is integrated in the JAVA program by using the LPA Win-Prolog Intelligence Server (IS) that provides a DLL interface between Win-Prolog and other applications. ©2009 IEEE.

2009

Data Mining Applications in Power Systems - Case-studies and Future Trends

Autores
Vale, ZA; Ramos, C; Ramos, S; Pinto, T;

Publicação
T& D ASIA: 2009 TRANSMISSION & DISTRIBUTION CONFERENCE & EXPOSITION: ASIA AND PACIFIC

Abstract
Presently power system operation produces huge volumes of data that is still treated in a very limited way. Knowledge discovery and machine learning can make use of these data resulting in relevant knowledge with very positive impact. In the context of competitive electricity markets these data is of even higher value making clear the trend to make data mining techniques application in power systems more relevant. This paper presents two cases based on real data, showing the importance of the use of data mining for supporting demand response and for supporting player strategic behavior.

2011

VPP's Multi-Level Negotiation in Smart Grids and Competitive Electricity Markets

Autores
Vale, Z; Pinto, T; Morais, H; Praca, I; Faria, P;

Publicação
2011 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING

Abstract
The increase of distributed generation (DG) has brought about new challenges in electrical networks electricity markets and in DG units operation and management. Several approaches are being developed to manage the emerging potential of DG, such as Virtual Power Players (VPPs), which aggregate DG plants; and Smart Grids, an approach that views generation and associated loads as a subsystem. This paper presents a multi-level negotiation mechanism for Smart Grids optimal operation and negotiation in the electricity markets, considering the advantages of VPPs' management. The proposed methodology is implemented and tested in MASCEM - a multiagent electricity market simulator, developed to allow deep studies of the interactions between the players that take part in the electricity market negotiations.

2011

MASCEM: Electricity Markets Simulation with Strategic Agents

Autores
Vale, Z; Pinto, T; Praca, I; Morais, H;

Publicação
IEEE INTELLIGENT SYSTEMS

Abstract
Electricity markets are complex environments, involving numerous entities trying to obtain the best advantages and profits while limited by power-network characteristics and constraints. This article proposes a new methodology integrated in MASCEM for bid definition in electricity markets. This methodology uses reinforcement learning algorithms to let players perceive changes in the environment, thus helping them react to the dynamic environment and adapt their bids accordingly. The system operator is usually responsible for managing the transmission grid and all the involved technical constraints. The market operator must assure that the economical dispatch accounts for the specified conditions, which might imply removing entities that have presented competitive bids but whose complex conditions were not satisfied. This result demonstrates that several algorithms can be combined with distinct characteristics.

2012

Intelligent Electric Vehicle Heuristic for Energy Resource Management using Simulated Annealing

Autores
Sousa, T; Pinto, T; Morais, H; Vale, Z;

Publicação
2012 3RD IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE (ISGT EUROPE)

Abstract
The smart grid concept appears as a suitable solution to guarantee the power system operation in the new electricity paradigm with electricity markets and integration of large amounts of Distributed Energy Resources (DERs). Virtual Power Player (VPP) will have a significant importance in the management of a smart grid. In the context of this new paradigm, Electric Vehicles (EVs) rise as a good available resource to be used as a DER by a VPP. This paper presents the application of the Simulated Annealing (SA) technique to solve the Energy Resource Management (ERM) of a VPP. It is also presented a new heuristic approach to intelligently handle the charge and discharge of the EVs. This heuristic process is incorporated in the SA technique, in order to improve the results of the ERM. The case study shows the results of the ERM for a 33-bus distribution network with three different EVs penetration levels, i.e., with 1000, 2000 and 3000 EVs. The results of the proposed adaptation of the SA technique are compared with a previous SA version and a deterministic technique.

  • 35
  • 61