2022
Autores
Almeida, MAS; Magalhães, JM; Maia, MM; Pires, AL; Pereira, AM;
Publicação
U.Porto Journal of Engineering
Abstract
Thermoelectric Generators (TEGs) are devices that have the ability to directly convert heat into electrical power, or vice-versa, and are being envisaged as one off-the-grid power source. Furthermore, carbon-based materials have been used as a conducting filler to improve several properties in thermoelectric materials. The present work studied the influence on the thermoelectric performance of Bi2Te3 bulk materials by incorporating different concentrations of Multi-Walled Carbon Nanotubes (MWCNT). In order to control and understand the influence of MWCNT dispersion in the nanocomposite, two different production methods (manual grinding and ultrasonication) were carried out and compared. It was verified that a larger dispersion leads to a better outcome for thermoelectric performance. The achieved Seebeck coefficient was up to-162 µV K-1 with a Power Factor of 0.50 µW K-2 m-1, for the nanocomposite produced with 11.8 %V of MWCNT. This result demonstrates the ability to increase the thermoelectric performance of Bi2Te3 throughout the addition of MWCNT. © 2022, Universidade do Porto - Faculdade de Engenharia. All rights reserved.
2024
Autores
Almeida, MAS; Almeida, JMMMD; Coelho, LCC;
Publicação
OPTICS AND LASER TECHNOLOGY
Abstract
Continuous monitoring of hydrogen (H2) concentration is critical for safer use, which can be done using optical sensors. Palladium (Pd) is the most commonly used transducer material for this monitoring. This material absorbs H2 leading to an isotropic expansion. This process is reversible but is affected by the interaction with interferents, and the lifetime of Pd thin films is a recurring issue. Fiber Bragg Grating (FBG) sensors are used to follow the strain induced by H2 on Pd thin films. In this work, it is studied the stability of Pd-coated FBGs, protected with a thin Polytetrafluoroethylene (PTFE) layer, 10 years after their deposition to assess their viability to be used as H2 sensors for long periods of time. It was found that Pd coatings that were PTFE-protected after deposition had a longer lifetime than unprotected films, with the same sensitivities that they had immediately after their deposition, namely 23 and 10 pm/vol% for the sensors with 150 and 100 nm of Pd, respectively, and a saturation point around 2 kPa. Furthermore, the Pd expansion was analyzed in the presence of H2, nitrogen (N2), carbon dioxide (CO2), methane (CH4) and water vapor (H2O), finding that H2O is the main interferent. Finally, an exhaustive test for 90 h is also done to analyze the long-term stability of Pd films in dry and humid environments, with only the protected sensor maintaining the long-term response. As a result, this study emphasizes the importance of using protective polymeric layers in Pd films to achieve the five-year lifetime required for a real H2 monitoring application.
2024
Autores
Almeida, MAS; Carvalho, JPM; Almeida, JMMM; Coelho, LCC;
Publicação
OPTICAL SENSING AND DETECTION VIII
Abstract
Energy consumption has increased exponentially due to population growth leading to an increasing impact on natural resources. Green hydrogen (H-2) offers a safer alternative to fossil fuels, making it a promising alternative for sustainable energy consumption. However, due to H-2's flammability it is crucial to monitor its concentrations in the environment. Optical sensors have been developed to monitor H-2 concentrations in harsh environments with high sensitivity and remote measurement. In this work, a numerical study and experimental validation of an optical fiber sensor based on Surface Plasmon Resonance (SPR) for H-2 detection are presented. This sensor is composed of a multi-mode fiber with a SPR structure of a metal/dielectric/Pd, where the Pd acts as a sensitive layer. The plasmonic active materials studied are Ag and Au, while TiO2 and SiO2 are used as dielectrics, finding that the metal materials have more impact on the SPR band definition, while the dielectric layers have an impact on the band spectral position. The optimized configuration with 25nm/60nm/3nm of Au/TiO2/Pd was experimentally developed, obtaining a wavelength shift of 19nm for 2kPa of H-2, validating the numerical results, and confirming the possibility of using this type of system for H-2 detection.
2024
Autores
Almeida, MA; Carvalho, JP; Pastoriza Santos, I; Almeida, JM; Coelho, LC;
Publicação
EPJ Web of Conferences
Abstract
2024
Autores
Carvalho, JP; Almeida, MA; Mendes, JP; Coelho, LC; De Almeida, JM;
Publicação
EPJ Web of Conferences
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.