Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Tomás Rocha

2024

Evaluation of MCP Correlation Algorithms Applied to Wind Data Series

Autores
Moreira, A; Rocha, T; Mendonça, J; Pilão, R; Pinto, P;

Publicação
Renewable Energy and Power Quality Journal

Abstract
This work aimed to develop methodologies for analysing statistical correlations among wind data series using various Measure-Correlate-Predict (MCP) methods, with the goal of selecting the most suitable method for extrapolating long-term data with minimal associated uncertainty. It was analysed the minimum time required for a wind measurement campaign when applying this methodology. Fifteen local wind measurement stations were selected. The long-term wind data reanalysis series that exhibited the strongest correlation with the measured wind data at each station was then chosen. Multiple tests were conducted with different simultaneous periods between the measured data series and the long-term series. Fifteen correlation algorithms were tested for each concurrent period. The performance of each model was evaluated using the RMSE (Root Mean Square Error) and MBE (Mean Bias Error) associated with each MCP. Analysis of the errors identified measurement periods with the lowest associated error ranging from 1 to 5 years and a single-factor ANOVA analysis was conducted. Finally, t-significance tests were performed. The study concluded that the Neural Network was the most effective MCP method. Additionally, it was determined that the minimum number of years required for a local measurement campaign should be between 2 and 3 years. © 2024, European Association for the Development of Renewable Energy, Environment and Power Quality (EA4EPQ). All rights reserved.