Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Pedro Henriques Abreu

2018

Improving the Classifier Performance in Motor Imagery Task Classification: What are the steps in the classification process that we should worry about?

Autores
Santos, MS; Abreu, PH; Rodriguez Bermudez, G; Garcia Laencina, PJ;

Publicação
INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS

Abstract
Brain-Computer Interface systems based on motor imagery are able to identify an individual's intent to initiate control through the classification of encephalography patterns. Correctly classifying such patterns is instrumental and strongly depends in a robust machine learning block that is able to properly process the features extracted from a subject's encephalograms. The main objective of this work is to provide an overall view on machine learning stages, aiming to answer the following question: "What are the steps in the classification process that we should worry about?". The obtained results suggest that future research in the field should focus on two main aspects: exploring techniques for dimensionality reduction, in particular, supervised linear approaches, and evaluating adequate validation schemes to allow a more precise interpretation of results.

2020

Guest Editorial: Information Fusion for Medical Data: Early, Late, and Deep Fusion Methods for Multimodal Data

Autores
Domingues, I; Muller, H; Ortiz, A; Dasarathy, BV; Abreu, PH; Calhoun, VD;

Publicação
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS

Abstract

2022

The identification of cancer lesions in mammography images with missing pixels: analysis of morphology

Autores
Santos, JC; Abreu, PH; Santos, MS;

Publicação
2022 IEEE 9TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA)

Abstract
The quality of mammography images is essential for the diagnosis of breast cancer and image imputation has become a popular technique to overcome noise, artifacts, and missing data to aid in the diagnosis of diseases. In this paper, we assess the performance of six imputation methodologies for the reconstruction of missing pixels in different morphologies in mammography images. The images included in this study are collected from four public datasets (CBIS-DDSM, Mini-MIAS, INbreast, and CSAW) and the imputation results are evaluated through the mean absolute error (MAE) and structural similarity index measure (SSIM). This study goes beyond the traditional evaluation of imputation algorithms, analyzing imputation quality, morphology preservation and classification performance. The effects of imputation on the morphology of cancer lesions are of utmost importance since it lays the foundation for physicians to interpret and analyze the imputation results. The results show that DIP is the most promising methodology for higher missing pixel rates, morphology preservation, and classifying malignant and benign images.

2021

FAWOS: Fairness-Aware Oversampling Algorithm Based on Distributions of Sensitive Attributes

Autores
Salazar, T; Santos, MS; Araujo, H; Abreu, PH;

Publicação
IEEE ACCESS

Abstract
With the increased use of machine learning algorithms to make decisions which impact people's lives, it is of extreme importance to ensure that predictions do not prejudice subgroups of the population with respect to sensitive attributes such as race or gender. Discrimination occurs when the probability of a positive outcome changes across privileged and unprivileged groups defined by the sensitive attributes. It has been shown that this bias can be originated from imbalanced data contexts where one of the classes contains a much smaller number of instances than the other classes. It is also important to identify the nature of the imbalanced data, including the characteristics of the minority classes' distribution. This paper presents FAWOS: a Fairness-Aware oversampling algorithm which aims to attenuate unfair treatment by handling sensitive attributes' imbalance. We categorize different types of datapoints according to their local neighbourhood with respect to the sensitive attributes, identifying which are more difficult to learn by the classifiers. In order to balance the dataset, FAWOS oversamples the training data by creating new synthetic datapoints using the different types of datapoints identified. We test the impact of FAWOS on different learning classifiers and analyze which can better handle sensitive attribute imbalance. Empirically, we observe that this algorithm can effectively increase the fairness results of the classifiers while not neglecting the classification performance. Source code can be found at: https://github.com/teresalazar13/FAWOS

2020

Adversarial Machine Learning Applied to Intrusion and Malware Scenarios: A Systematic Review

Autores
Martins, N; Cruz, JM; Cruz, T; Abreu, PH;

Publicação
IEEE ACCESS

Abstract
Cyber-security is the practice of protecting computing systems and networks from digital attacks, which are a rising concern in the Information Age. With the growing pace at which new attacks are developed, conventional signature based attack detection methods are often not enough, and machine learning poses as a potential solution. Adversarial machine learning is a research area that examines both the generation and detection of adversarial examples, which are inputs specially crafted to deceive classifiers, and has been extensively studied specifically in the area of image recognition, where minor modifications are performed on images that cause a classifier to produce incorrect predictions. However, in other fields, such as intrusion and malware detection, the exploration of such methods is still growing. The aim of this survey is to explore works that apply adversarial machine learning concepts to intrusion and malware detection scenarios. We concluded that a wide variety of attacks were tested and proven effective in malware and intrusion detection, although their practicality was not tested in intrusion scenarios. Adversarial defenses were substantially less explored, although their effectiveness was also proven at resisting adversarial attacks. We also concluded that, contrarily to malware scenarios, the variety of datasets in intrusion scenarios is still very small, with the most used dataset being greatly outdated.

2014

MusE Central: A Data Aggregation System for Music Events

Autores
Simoes, D; Abreu, PH; Silva, DC;

Publicação
NEW PERSPECTIVES IN INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 2

Abstract
Along with the evolution of the Internet and its ever-increasing use, a significant trend to develop solutions to provide information is noticeable. This scenario increases information decentralization in certain contexts. Nowadays, information regarding music is available online in several online locations. In this context, this paper reports on the development of a web platform that centralizes existing information regarding events, retrieving other contextually related data available. Validated with both information retrieval quality and interface usability metrics, this project attained a more effective and complete concert search service according to the data provided to the user. It has revealed itself capable of retrieving information on more events, when compared to other platforms without a data centralization approach. According to the usability survey results attained, such as an 89 SUS scale score, it was proved that the developed service is provided with a simple and intuitive interface as well.

  • 10
  • 14