Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Pedro Henriques Abreu

2019

An Iterative Oversampling Approach for Ordinal Classification

Autores
Marques, F; Duarte, H; Santos, J; Domingues, I; Amorim, JP; Abreu, PH;

Publicação
SAC '19: PROCEEDINGS OF THE 34TH ACM/SIGAPP SYMPOSIUM ON APPLIED COMPUTING

Abstract
The machine learning field has grown considerably in the last years. There are, however, some problems still to be solved. The characteristics of the training sets, for instance, are known to affect the classifiers performance. Here, and inspired by medical applications, we are interested in studying datasets that are both ordinal and imbalanced. Ordinal datasets present labels where only the relative ordering between different values is significant. Imbalanced datasets have very different quantity of examples per class. Building upon our previous work, we make three new contributions, (1) extend the number of classifiers, (2) evaluate two techniques to balance intermediate train sets in binary decomposition methods (often used in multi-class contexts and ordinal ones in particular), and (3) propose a new, iterative, classifier-based oversampling algorithm that we name InCuBAtE. Experiments were made on 6 private datasets, concerning the assessment of response to treatment on oncologic diseases, and 15 public datasets widely used in the literature. When compared with our previous work, results have improved (or remained the same) for 4 of the 6 private datasets and for 11 out of the 15 public datasets.

2020

Using deep learning techniques in medical imaging: a systematic review of applications on CT and PET

Autores
Domingues, I; Pereira, G; Martins, P; Duarte, H; Santos, J; Abreu, PH;

Publicação
ARTIFICIAL INTELLIGENCE REVIEW

Abstract
Medical imaging is a rich source of invaluable information necessary for clinical judgements. However, the analysis of those exams is not a trivial assignment. In recent times, the use of deep learning (DL) techniques, supervised or unsupervised, has been empowered and it is one of the current research key areas in medical image analysis. This paper presents a survey of the use of DL architectures in computer-assisted imaging contexts, attending two different image modalities: the actively studied computed tomography and the under-studied positron emission tomography, as well as the combination of both modalities, which has been an important landmark in several decisions related to numerous diseases. In the making of this review, we analysed over 180 relevant studies, published between 2014 and 2019, that are sectioned by the purpose of the research and the imaging modality type. We conclude by addressing research issues and suggesting future directions for further improvement. To our best knowledge, there is no previous work making a review of this issue.

2017

An artificial neural networks approach for assessment treatment response in oncological patients using PET/CT images

Autores
Nogueira, MA; Abreu, PH; Martins, P; Machado, P; Duarte, H; Santos, J;

Publicação
BMC MEDICAL IMAGING

Abstract
Background: Positron Emission Tomography - Computed Tomography (PET/CT) imaging is the basis for the evaluation of response-to-treatment of several oncological diseases. In practice, such evaluation is manually performed by specialists, which is rather complex and time-consuming. Evaluation measures have been proposed, but with questionable reliability. The usage of before and after-treatment image descriptors of the lesions for treatment response evaluation is still a territory to be explored. Methods: In this project, Artificial Neural Network approaches were implemented to automatically assess treatment response of patients suffering from neuroendocrine tumors and Hodgkyn lymphoma, based on image features extracted from PET/CT. Results: The results show that the considered set of features allows for the achievement of very high classification performances, especially when data is properly balanced. Conclusions: After synthetic data generation and PCA-based dimensionality reduction to only two components, LVQNN assured classification accuracies of 100%, 100%, 96.3% and 100% regarding the 4 response- to-treatment classes.

2023

A unifying view of class overlap and imbalance: Key concepts, multi-view panorama, and open avenues for research

Autores
Santos, MS; Abreu, PH; Japkowicz, N; Fernandez, A; Santos, J;

Publicação
INFORMATION FUSION

Abstract
The combination of class imbalance and overlap is currently one of the most challenging issues in machine learning. While seminal work focused on establishing class overlap as a complicating factor for classification tasks in imbalanced domains, ongoing research mostly concerns the study of their synergy over real-word applications. However, given the lack of a well-formulated definition and measurement of class overlap in real-world domains, especially in the presence of class imbalance, the research community has not yet reached a consensus on the characterisation of both problems. This naturally complicates the evaluation of existing approaches to address these issues simultaneously and prevents future research from moving towards the devise of specialised solutions. In this work, we advocate for a unified view of the problem of class overlap in imbalanced domains. Acknowledging class overlap as the overarching problem - since it has proven to be more harmful for classification tasks than class imbalance - we start by discussing the key concepts associated to its definition, identification, and measurement in real-world domains, while advocating for a characterisation of the problem that attends to multiple sources of complexity. We then provide an overview of existing data complexity measures and establish the link to what specific types of class overlap problems these measures cover, proposing a novel taxonomy of class overlap complexity measures. Additionally, we characterise the relationship between measures, the insights they provide, and discuss to what extent they account for class imbalance. Finally, we systematise the current body of knowledge on the topic across several branches of Machine Learning (Data Analysis, Data Preprocessing, Algorithm Design, and Meta-learning), identifying existing limitations and discussing possible lines for future research.

2020

How distance metrics influence missing data imputation with k-nearest neighbours

Autores
Santos, MS; Abreu, PH; Wilk, S; Santos, J;

Publicação
PATTERN RECOGNITION LETTERS

Abstract
In missing data contexts, k-nearest neighbours imputation has proven beneficial since it takes advantage of the similarity between patterns to replace missing values. When dealing with heterogeneous data, researchers traditionally apply the HEOM distance, that handles continuous, nominal and missing data. Although other heterogeneous distances have been proposed, they have not yet been investigated and compared for k-nearest neighbours imputation. In this work, we study the effect of several heterogeneous distances on k-nearest neighbours imputation on a large benchmark of publicly-available datasets.

2020

Assessing the Impact of Distance Functions on K-Nearest Neighbours Imputation of Biomedical Datasets

Autores
Santos, MS; Abreu, PH; Wilk, S; Santos, JAM;

Publicação
Artificial Intelligence in Medicine - 18th International Conference on Artificial Intelligence in Medicine, AIME 2020, Minneapolis, MN, USA, August 25-28, 2020, Proceedings

Abstract
In healthcare domains, dealing with missing data is crucial since absent observations compromise the reliability of decision support models. K-nearest neighbours imputation has proven beneficial since it takes advantage of the similarity between patients to replace missing values. Nevertheless, its performance largely depends on the distance function used to evaluate such similarity. In the literature, k-nearest neighbours imputation frequently neglects the nature of data or performs feature transformation, whereas in this work, we study the impact of different heterogeneous distance functions on k-nearest neighbour imputation for biomedical datasets. Our results show that distance functions considerably impact the performance of classifiers learned from the imputed data, especially when data is complex. © 2020, Springer Nature Switzerland AG.

  • 6
  • 14