Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Manuel Barbosa

2021

Algebraic Adversaries in the Universal Composability Framework

Autores
Abdalla, M; Barbosa, M; Katz, J; Loss, J; Xu, J;

Publicação
Advances in Cryptology - ASIACRYPT 2021 - 27th International Conference on the Theory and Application of Cryptology and Information Security, Singapore, December 6-10, 2021, Proceedings, Part III

Abstract
The algebraic-group model (AGM), which lies between the generic group model and the standard model of computation, provides a means by which to analyze the security of cryptosystems against so-called algebraic adversaries. We formalize the AGM within the framework of universal composability, providing formal definitions for this setting and proving an appropriate composition theorem. This extends the applicability of the AGM to more-complex protocols, and lays the foundations for analyzing algebraic adversaries in a composable fashion. Our results also clarify the meaning of composing proofs in the AGM with other proofs and they highlight a natural form of independence between idealized groups that seems inherent to the AGM and has not been made formal before—these insights also apply to the composition of game-based proofs in the AGM. We show the utility of our model by proving several important protocols universally composable for algebraic adversaries, specifically: (1) the Chou-Orlandi protocol for oblivious transfer, and (2) the SPAKE2 and CPace protocols for password-based authenticated key exchange.

2021

CODBS: A cascading oblivious search protocol optimized for real-world relational database indexes

Autores
Pontes, R; Portela, B; Barbosa, M; Vilaca, R;

Publicação
2021 40TH INTERNATIONAL SYMPOSIUM ON RELIABLE DISTRIBUTED SYSTEMS (SRDS 2021)

Abstract
Encrypted databases systems and searchable encryption schemes still leak critical information (e.g.: access patterns) and require a choice between privacy and efficiency. We show that using ORAM schemes as a black-box is not a panacea and that optimizations are still possible by improving the data structures. We design an ORAM-based secure database that is built from the ground up: we replicate the typical data structure of a database system using different optimized ORAM constructions and derive a new solution for oblivious searches on databases. Our construction has a lower bandwidth overhead than state-of-the-art ORAM constructions by moving client-side computations to a proxy with an intermediate (rigorously defined) level of trust, instantiated as a server-side isolated execution environment. We formally prove the security of our construction and show that its access patterns depend only on public information. We also provide an implementation compatible with SQL databases (PostgresSQL). Our system is 1.2 times to 4 times faster than state-of-the-art ORAM-based solutions.

2021

EasyPQC: Verifying Post-Quantum Cryptography

Autores
Barbosa, M; Barthe, G; Fan, X; Gregoire, B; Hung, SH; Katz, J; Strub, PY; Wu, XD; Zhou, L;

Publicação
CCS '21: PROCEEDINGS OF THE 2021 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY

Abstract
EasyCrypt is a formal verification tool used extensively for formalizing concrete security proofs of cryptographic constructions. However, the EasyCrypt formal logics consider only classical attackers, which means that post-quantum security proofs cannot be formalized and machine-checked with this tool. In this paper we prove that a natural extension of the EasyCrypt core logics permits capturing a wide class of post-quantum cryptography proofs, settling a question raised by (Unruh, POPL 2019). Leveraging our positive result, we implement EasyPQC, an extension of EasyCrypt for post-quantum security proofs, and use EasyPQC to verify post-quantum security of three classic constructions: PRF-based MAC, Full Domain Hash and GPV08 identity-based encryption.

2022

A formal treatment of the role of verified compilers in secure computation

Autores
Almeida, JCB; Barbosa, M; Barthe, G; Pacheco, H; Pereira, V; Portela, B;

Publicação
JOURNAL OF LOGICAL AND ALGEBRAIC METHODS IN PROGRAMMING

Abstract
Secure multiparty computation (SMC) allows for complex computations over encrypted data. Privacy concerns for cloud applications makes this a highly desired technology and recent performance improvements show that it is practical. To make SMC accessible to non-experts and empower its use in varied applications, many domain-specific compilers are being proposed.We review the role of these compilers and provide a formal treatment of the core steps that they perform to bridge the abstraction gap between high-level ideal specifications and efficient SMC protocols. Our abstract framework bridges this secure compilation problem across two dimensions: 1) language-based source- to target-level semantic and efficiency gaps, and 2) cryptographic ideal- to real-world security gaps. We link the former to the setting of certified compilation, paving the way to leverage long-run efforts such as CompCert in future SMC compilers. Security is framed in the standard cryptographic sense. Our results are supported by a machine-checked formalisation carried out in EasyCrypt.

2023

Rogue key and impersonation attacks on FIDO2: From theory to practice

Autores
Barbosa, M; Cirne, A; Esquível, L;

Publicação
18TH INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY & SECURITY, ARES 2023

Abstract
FIDO2 is becoming a defacto standard for passwordless authentication. Using FIDO2 and WebAuthn, web applications can enable users to associate cryptographic credentials to their profiles, and then rely on an external authenticator (e.g., a hardware token plugged into the USB port) to perform strong signature-based authentication when accessing their accounts. The security of FIDO2 has been theoretically validated, but these analyses follow the threat model adopted in the FIDO2 design and explicitly exclude some attack vectors as being out of scope. In this paper we show that two of these attacks, which appear to be folklore in the community, are actually straightforward to launch in practice (user PIN extraction, impersonation and rogue key registration). We demonstrate a deployment over vanilla Linux distributions and commercial FIDO2 authenticators. We discuss the potential impact of our results, which we believe will contribute to the improvement of future versions of the protocol.

2023

Kyber terminates

Autores
Barbosa, M; Schwabe, P;

Publicação
IACR Cryptol. ePrint Arch.

Abstract

  • 7
  • 19