Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CPES

2018

Power quality performance of fast-charging under extreme temperature conditions

Autores
Lucas A.; Trentadue G.; Scholz H.; Otura M.;

Publicação
Energies

Abstract
Exposing electric vehicles (EV) to extreme temperatures limits its performance and charging. For the foreseen adoption of EVs, it is not only important to study the technology behind it, but also the environment it will be inserted into. In Europe, temperatures ranging from -30°C to +40°C are frequently observed and the impacts on batteries are well-known. However, the impact on the grid due to the performance of fast-chargers, under such conditions, also requires analysis, as it impacts both on the infrastructure's dimensioning and design. In this study, six different fast-chargers were analysed while charging a full battery EV, under four temperature levels (-25 °C, -15 °C, +20 °C, and +40 °C). The current total harmonic distortion, power factor, standby power, and unbalance were registered. Results show that the current total harmonic distortion (THDI) tended to increase at lower temperatures. The standby consumption showed no trend, with results ranging from 210 VA to 1650 VA. Three out of six chargers lost interoperability at -25 °C. Such non-linear loads, present high harmonic distortion, and, hence, low power factor. The temperature at which the vehicle's battery charges is crucial to the current it withdraws, thereby, influencing the charger's performance.

2018

Evaluation of fast charging efficiency under extreme temperatures

Autores
Trentadue G.; Lucas A.; Otura M.; Pliakostathis K.; Zanni M.; Scholz H.;

Publicação
Energies

Abstract
Multi-type fast charging stations are being deployed over Europe as electric vehicle adoption becomes more popular. The growth of an electrical charging infrastructure in different countries poses different challenges related to its installation. One of these challenges is related to weather conditions that are extremely heterogeneous due to different latitudes, in which fast charging stations are located and whose impact on the charging performance is often neglected or unknown. The present study focused on the evaluation of the electric vehicle (EV) charging process with fast charging devices (up to 50 kW) at ambient (25°C) and at extreme temperatures (-25°C, -15°C, +40°C). A sample of seven fast chargers and two electric vehicles (CCS (combined charging system) and CHAdeMO (CHArge de Move)) available on the commercial market was considered in the study. Three phase voltages and currents at the wall socket, where the charger was connected, as well as voltage and current at the plug connection between the charger and vehicle have been recorded. According to SAE (Society of Automotive Engineers) J2894/1, the power conversion efficiency during the charging process has been calculated as the ratio between the instantaneous DC power delivered to the vehicle and the instantaneous AC power supplied from the grid in order to test the performance of the charger. The inverse of the efficiency of the charging process, i.e., a kind of energy return ratio (ERR), has been calculated as the ratio between the AC energy supplied by the grid to the electric vehicle supply equipment (EVSE) and the energy delivered to the vehicle's battery. The evaluation has shown a varied scenario, confirming the efficiency values declared by the manufacturers at ambient temperature and reporting lower energy efficiencies at extreme temperatures, due to lower requested and, thus, delivered power levels. The lowest and highest power conversion efficiencies of 39% and 93% were observed at -25°C and ambient temperature (+25°C), respectively.

2018

Single-phase PV power injection limit due to voltage unbalances applied to an urban reference network using real-time simulation

Autores
Lucas A.;

Publicação
Applied Sciences (Switzerland)

Abstract
As photovoltaic (PV) penetration increases in low-voltage distribution networks, voltage variation may become a problem. This is particularly important in residential single-phase systems, due to voltage unbalances created by the inflow of points in the network. The existing literature frequently refers to three-phase systems focusing on losses and voltage variations. Many studies tend to use case studies whose conclusions are difficult to replicate and generalise. As levels of residential PV rise, single-phase PV power injection levels, before voltage unbalances reach standard limits, become important to be investigated. In this study, an urban European reference network is considered, and using a real-time digital simulator, different levels of PV penetration are simulated. PV systems are connected to the same phase (unbalanced case), and are also evenly phase-distributed (balanced case). Considering a 2-3% unbalance limit, approximately 3.5-4.6 kW could be injected in every bus in an unbalanced scenario. With a balanced PV distribution, the power injected could reach 10-13 kW per bus. Buses closer to the power transformer allow higher power connections, due to cable distances and inferior voltage drops. Feeder length, loads considered during simulation, and cable shunt capacitance reactance influence the results the most.

2018

Indicator-based methodology for assessing EV charging infrastructure using exploratory data analysis

Autores
Lucas A.; Prettico G.; Flammini M.; Kotsakis E.; Fulli G.; Masera M.;

Publicação
Energies

Abstract
Electric vehicle (EV) charging infrastructure rollout iswell underway in several power systems, namelyNorthAmerica, Japan, Europe, and China. In order to support EVcharging infrastructures design and operation, little attempt has been made to develop indicator-based methods characterising such networks across different regions. This study defines an assessment methodology, composed by eight indicators, allowing a comparison among EV public charging infrastructures. The proposed indicators capture the following: energy demand from EVs, energy use intensity, charger's intensity distribution, the use time ratios, energy use ratios, the nearest neighbour distance between chargers and availability, the total service ratio, and the carbon intensity as an environmental impact indicator. We apply the methodology to a dataset from ElaadNL, a reference smart charging provider in The Netherlands, using open source geographic information system (GIS) and R software. The dataset reveals higher energy intensity in six urban areas and that 50% of energy supplied comes from 19.6% of chargers. Correlations of spatial density are strong and nearest neighbouring distances range from 1101 to 9462 m. Use time and energy use ratios are 11.21% and 3.56%. The average carbon intensity is 4.44 gCO2eq/MJ. Finally, the indicators are used to assess the impact of relevant public policies on the EV charging infrastructure use and roll-out.

2018

Low carbon electricity systems for Great Britain in 2050: An energy-land-water perspective

Autores
Price J.; Zeyringer M.; Konadu D.; Sobral Mourão Z.; Moore A.; Sharp E.;

Publicação
Applied Energy

Abstract
The decarbonisation of the power sector is key to achieving the Paris Agreement goal of limiting global mean surface temperature rise to well below 2 °C. This will require rapid, national level transitions to low carbon electricity generation, such as variable renewables (VRE), nuclear and fossil fuels with carbon capture and storage, across the world. At the same time it is essential that future power systems are sustainable in the wider sense and thus respect social, environmental and technical limitations. Here we develop an energy-land-water nexus modelling framework and use it to perform a scenario analysis with the aim of understanding the planning and operational implications of these constraints on Great Britain's (GB) power system in 2050. We consider plausible scenarios for limits on installed nuclear capacity, siting restrictions that shape VRE deployment and water use for thermal power station cooling. We find that these factors combined can lead to up to a 25% increase in the system's levelised cost of electricity (LCOE). VRE siting restrictions can result in an up to 13% increase in system LCOE as the deployment of onshore wind is limited while nuclear capacity restrictions can drive an up to 17% greater LCOE. We also show that such real-world limitations can cause substantial changes in system design both in terms of the spatial pattern of where generators are located and the capacity mix of the system. Thus we demonstrate the large impact simultaneously considering a set of nexus factors can have on future GB power systems. Finally, given our plausible assumptions about key energy-land-water restrictions and emission limits effecting the GB power system in 2050, the cost optimal penetration of VREs is found to be at least 50%.

2018

Practical considerations in the deployment of ground source heat pumps in older properties-A case study

Autores
McMahon, R; Santos, H; Mourao, ZS;

Publicação
ENERGY AND BUILDINGS

Abstract
A ground-sourced heat pump (GSHP) was installed in a former Vicarage in Cambridgeshire, with a mix of solid wall structure built in the late 1800s and cavity wall section built in the 2000s, previously heated by oil. This type of building is usually considered unsuitable for heat pumps, unless substantial insulation work and extensive replacement of radiators are undertaken. Although the building had undergone a degree of retrofit to increase insulation, the GSHP was installed with the existing radiators. A detailed thermal model for the house was built in ESP-r and validated against experimental measurements taken from sensors in every room. The expected heating demands were computed from the model based on weather data and the GSHP system was designed accordingly. A compromise was made between minimizing the size of the heat pump and the achievable energy savings, which could have important implications for the way incentives for low-emissions heating systems are set up. Using the initial SAP assessment would have led to a substantial oversizing of the heat pump. The data collected so far show that an SPF of 2.9 has been achieved whilst maintaining comfortable (C-18) internal temperatures and emissions of CO2 have been reduced by 70%.

  • 126
  • 317