Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CPES

2017

ADMS4LV – advanced distribution management system for active management of LV grids

Autores
Campos, F; Marques, L; Silva, N; Melo, F; Seca, L; Gouveia, C; Madureira, A; Pereira, J;

Publicação
CIRED - Open Access Proceedings Journal

Abstract

2017

Managing forecast uncertainty in power system security assessment

Autores
Ciapessoni, E; Cirio, D; Pitto, A; Omont, N; Vasconcelos, MH; Carvalho, LM;

Publicação
2017 4TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT)

Abstract
Accounting for the increasing uncertainties related to forecast of renewables is becoming an essential requirement while assessing the security of future power system scenarios. The FP7 EU project iTesla tackles these needs and reaches several major objectives, including the development of a security platform architecture. In particular, the platform implements a complex stochastic dependence model to simulate a reasonable cloud of plausible "future" states - due to renewable forecast - around the expected state, and evaluates the security on relevant states sampling the cloud of uncertainty. The paper focuses on the proposed model of the uncertainty and its exploitation in power system security assessment process.

2017

DESIGN AND CONTROL OF PARALLEL THREE PHASE VOLTAGE SOURCE INVERTERS IN LOW VOLTAGE AC MICROGRID

Autores
Margoum, E; Krami, N; Seca, L; Moreira, C; Mharzi, H;

Publicação
ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING

Abstract
Design and hierarchical control of three phase parallel Voltage Source Inverters are developed in this paper. The control scheme is based on synchronous reference frame and consists of primary and secondary control levels. The primary control consists of the droop control and the virtual output impedance loops. This control level is designed to share the active and reactive power correctly between the connected VSIs in order to avoid the undesired circulating current and overload of the connected VSIs. The secondary control is designed to clear the magnitude and the frequency deviations caused by the primary control. The control structure is validated through dynamics simulations. The obtained results demonstrate the effectiveness of the control structure.

2017

Identification of Dynamic Simulation Models for Variable Speed Pumped Storage Power Plants

Autores
Moreira, C; Fulgencio, N; Silva, B; Nicolet, C; Beguin, A;

Publicação
HYPERBOLE SYMPOSIUM 2017 (HYDROPOWER PLANTS PERFORMANCE AND FLEXIBLE OPERATION TOWARDS LEAN INTEGRATION OF NEW RENEWABLE ENERGIES)

Abstract
This paper addresses the identification of reduced order models for variable speed pump-turbine plants, including the representation of the dynamic behaviour of the main components: hydraulic system, turbine governors, electromechanical equipment and power converters. A methodology for the identification of appropriated reduced order models both for turbine and pump operating modes is presented and discussed. The methodological approach consists of three main steps: 1) detailed pumped-storage power plant modelling in SIMSEN; 2) reduced order models identification and 3) specification of test conditions for performance evaluation.

2017

Integration of Variable Speed Pumped Hydro Storage in Automatic Generation Control Systems

Autores
Fulgencio, N; Moreira, C; Silva, B;

Publicação
HYPERBOLE SYMPOSIUM 2017 (HYDROPOWER PLANTS PERFORMANCE AND FLEXIBLE OPERATION TOWARDS LEAN INTEGRATION OF NEW RENEWABLE ENERGIES)

Abstract
Pumped storage power (PSP) plants are expected to be an important player in modern electrical power systems when dealing with increasing shares of new renewable energies (NRE) such as solar or wind power. The massive penetration of NRE and consequent replacement of conventional synchronous units will significantly affect the controllability of the system. In order to evaluate the capability of variable speed PSP plants participation in the frequency restoration reserve (FRR) provision, taking into account the expected performance in terms of improved ramp response capability, a comparison with conventional hydro units is presented. In order to address this issue, a three area test network was considered, as well as the corresponding automatic generation control (AGC) systems, being responsible for re-dispatching the generation units to re-establish power interchange between areas as well as the system nominal frequency. The main issue under analysis in this paper is related to the benefits of the fast response of variable speed PSP with respect to its capability of providing fast power balancing in a control area.

2017

On the Profitability of Variable Speed Pump-Storage-Power in Frequency Restoration Reserve

Autores
Filipe, J; Bessa, R; Moreira, C; Silva, B;

Publicação
HYPERBOLE SYMPOSIUM 2017 (HYDROPOWER PLANTS PERFORMANCE AND FLEXIBLE OPERATION TOWARDS LEAN INTEGRATION OF NEW RENEWABLE ENERGIES)

Abstract
The increase penetration of renewable energy sources (RES) into the European power system has introduced a significant amount of variability and uncertainty in the generation profiles raising the needs for ancillary services as well as other tools like demand response, improved generation forecasting techniques and changes to the market design. While RES is able to replace energy produced by the traditional centralized generation, it cannot displace its capacity in terms of ancillary services provided. Therefore, centralized generation capacity must be retained to perform this function leading to over-capacity issues and underutilisation of the assets. Large-scale reversible hydro power plants represent the majority of the storage solution installed in the power system. This technology comes with high investments costs, hence the constant search for methods to increase and diversify the sources of revenue. Traditional fixed speed pump storage units typically operate in the day-ahead market to perform price arbitrage and, in some specific cases, provide downward replacement reserve (RR). Variable speed pump storage can not only participate in RR but also contribute to FRR, given their ability to control its operating point in pumping mode. This work does an extended analysis of a complete bidding strategy for Pumped Storage Power, enhancing the economic advantages of variable speed pump units in comparison with fixed ones.

  • 133
  • 317