Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CPES

2017

Remuneration and Tariffs in the Context of Virtual Power Players

Autores
Ribeiro, C; Pinto, T; Vale, ZA; Baptista, J;

Publicação
Trends in Cyber-Physical Multi-Agent Systems. The PAAMS Collection - 15th International Conference, PAAMS 2017, Porto, Portugal, June 21-23, 2017, Special Sessions.

Abstract
Power systems have been through deep changes, with their operation in the scope of competitive electricity markets (EM) and the increasingly intensive use of renewable energy sources and distributed generation. This requires new business models able to cope with the new opportunities. Virtual Power Players (VPPs) are a new player type which allows aggregating a diversity of players (distribution Generation, storage units, electrical vehicles, and consumers) to participate in the markets and to provide a set of new services promoting generation and consumption efficiency and to improving players’ benefits. A major task of VPPs is the remuneration of generation and of the services (e.g. market operation costs, and energy reserves) as well as charging energy consumption. This PhD research will contribute by developing fair and strategic remuneration and tariff methodologies, able to allow efficient VPP operation and VPP goals accomplishment in EM. © Springer International Publishing AG 2018.

2017

Individualizing propofol dosage: a multivariate linear model approach (vol 28, pg 525, 2014)

Autores
Rocha, C; Mendonca, T; Silva, ME; Gambus, P;

Publicação
JOURNAL OF CLINICAL MONITORING AND COMPUTING

Abstract

2017

Optimal offering and allocation policies for wind power in energy and reserve markets

Autores
Soares, T; Jensen, TV; Mazzi, N; Pinson, P; Morais, H;

Publicação
WIND ENERGY

Abstract
Proliferation of wind power generation is increasingly making this power source an important asset in designs of energy and reserve markets. Intuitively, wind power producers will require the development of new offering strategies that maximize the expected profit in both energy and reserve markets while fulfilling the market rules and its operational limits. In this paper, we implement and exploit the controllability of the proportional control strategy. This strategy allows the splitting of potentially available wind power generation in energy and reserve markets. In addition, we take advantage of better forecast information from the different day-ahead and balancing stages, allowing different shares of energy and reserve in both stages. Under these assumptions, different mathematical methods able to deal with the uncertain nature of wind power generation, namely, stochastic programming, with McCormick relaxation and piecewise linear decision rules are adapted and tested aiming to maximize the expected revenue for participating in both energy and reserve markets, while accounting for estimated balancing costs for failing to provide energy and reserve. A set of numerical examples, as well as a case study based on real data, allow the analysis and evaluation of the performance and behavior of such techniques. An important conclusion is that the use of the proposed approaches offers a degree of freedom in terms of minimizing balancing costs for the wind power producer strategically to participate in both energy and reserve markets. Copyright (c) 2017 John Wiley & Sons, Ltd.

2017

Energy and Reserve under Distributed Energy Resources Management-Day-Ahead, Hour-Ahead and Real-Time

Autores
Soares, T; Silva, M; Sousa, T; Morais, H; Vale, Z;

Publicação
ENERGIES

Abstract
The increasing penetration of distributed energy resources based on renewable energy sources in distribution systems leads to a more complex management of power systems. Consequently, ancillary services become even more important to maintain the system security and reliability. This paper proposes and evaluates a generic model for day-ahead, intraday (hour-ahead) and real-time scheduling, considering the joint optimization of energy and reserve in the scope of the virtual power player concept. The model aims to minimize the operation costs in the point of view of one aggregator agent taking into account the balance of the distribution system. For each scheduling stage, previous scheduling results and updated forecasts are considered. An illustrative test case of a distribution network with 33 buses, considering a large penetration of distribution energy resources allows demonstrating the benefits of the proposed model.

2017

Plug-In Electric Vehicles Parking Lot Equilibria With Energy and Reserve Markets

Autores
Neyestani, N; Damavandi, MY; Shafie Khah, M; Bakirtzis, AG; Catalao, JPS;

Publicação
IEEE TRANSACTIONS ON POWER SYSTEMS

Abstract
This paper proposes a comprehensive model for the interactions of the plug-in electric vehicles (PEVs) involved parties. An aggregator with mixed resources is assumed to be the interface between the parking lot (PL) and the upstream energy and reserve markets. On the other hand, the interactions of the PEV owners and the PL are also modeled as they impose restrictions to the PL's behavior. Therefore, a bilevel problem is constructed where in the upper level the objective of the aggregator is to maximize its profit through its interactions, and in the lower level the PL maximizes its own profit limited to the preferences of PEVs. The objectives of the upper and lower levels are contradictory; hence, an equilibrium point should be found to solve the problem. In this regard, the duality theorem is employed to convert the bilevel model to a mathematical program with equilibrium constraints. The model is implemented on the IEEE 37-bus network with added distributed generations. Various cases are thoroughly investigated and conclusions are duly drawn.

2017

Assessing the Effectiveness of Decision Making Frameworks in Local Energy Systems

Autores
Damavandi, MY; Neyestani, N; Shafie khan, M; Chicco, G; Catalao, JPS;

Publicação
2017 7TH INTERNATIONAL CONFERENCE ON MODERN POWER SYSTEMS (MPS)

Abstract
This paper investigates the effectiveness of using different decision-making frameworks in local energy systems (LES) through the assessment of the long-term equilibrium of energy players. For this purpose, the energy system is modelled through two levels of multi-energy player (MEP) and LES, coupled by energy price signals. The conflict between the decision-making of these two levels of players is modelled through a bi-level approach. A mathematical problem with equilibrium constraint is formulated by applying the duality theory, resorting to a linear representation of the constraints. The solution is found by using the CPLEX12 solver. The numerical results show the characteristics of the MEP behaviour in different energy aggregation modes for the LES, with centralised management or uniform pricing. The MEP may find benefits from possible synergies among the LES due to availability of energy carriers with complementary characteristics.

  • 141
  • 317