2024
Autores
Prakash, PH; Lopes, JP; Silva, B;
Publicação
2024 IEEE 22ND MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, MELECON 2024
Abstract
This paper introduces a detailed procedure for executing a black start service from an offshore wind farm (OWF) through the integration of grid-forming (GFM) control. The proposed strategy involves exploiting a grid-forming battery energy storage system (BESS) to deliver black start service within an OWF equipped with grid-following wind turbines. Controller modelling, and operation methodology are explained. To illustrate the efficacy of the suggested control and operation principles, the study employs an OWF as a case study. Simulation analyses are conducted using the Matlab/Simulink software to demonstrate the viability of the presented strategy.
2024
Autores
Prakash, H; Lopes, P; Silva, B;
Publicação
IET Conference Proceedings
Abstract
This paper presents a comprehensive procedure for conducting a black start service from an offshore wind farm (OWF) by integrating grid-forming (GFM) control. The proposed strategy utilizes a grid-forming battery energy storage system (BESS) to provide black start service within an OWF that is equipped with grid-following wind turbines. The paper elaborates on the modeling of controllers and the operational methodology taking wind variability during the black start procedure. To showcase the effectiveness of the proposed control and operation principles, the study utilizes an OWF as a case study. Simulation analyses are performed using Matlab/Simulink software to validate the feasibility of the proposed strategy. © Energynautics GmbH.
2024
Autores
Monteiro, P; Lino, J; Araújo, RE; Costa, L;
Publicação
EAI Endorsed Trans. Energy Web
Abstract
In this paper, the performance analysis of Machine Learning (ML) algorithms for fault analysis in photovoltaic (PV) plants, is given for different algorithms. To make the comparison more relevant, this study is made based on a real dataset. The goal was to use electric and environmental data from a PV system to provide a framework for analysing, comparing, and discussing five ML algorithms, such as: Multilayer Perceptron (MLP), Decision Tree (DT), K-Nearest Neighbors (KNN), Support Vector Machine (SVM) and Light Gradient Boosting Machine (LightGBM). The research findings suggest that an algorithm from the Gradient Boosting family called LightGBM can offer comparable or better performance in fault diagnosis for PV system.
2024
Autores
Melo, PS; Araújo, RE;
Publicação
COGENT ENGINEERING
Abstract
Core loss estimation in switched reluctance motor is a complex task, due to non-linear phenomena and non-sinusoidal flux density waveforms. Several methods have been developed for estimating it (e.g. empirical, and physical-mathematic models), each one with merits and limitations. This paper proposes a new method for core losses estimation based on Finite Element Method Magnetics software. The main idea is using the machine phase-current harmonics as input for estimating core losses. In addition, a comparative study is carried out, where the proposed approach is faced up to a different one, based on Fourier decomposition of the flux density waveforms in the machine sections. In order to systematically analyze and compare the applied estimation cores loss techniques, a case study of a three-phase 6/4 SRM for different simulation scenarios is introduced. The outcomes of both methods are discussed and compared, where core loss convergence is found for limited speed and load ranges.
2024
Autores
Touati, Z; Mahmoud, I; Araujo, RE; Khedher, A;
Publicação
ENERGIES
Abstract
There is limited research focused on achieving optimal torque control performance of Switched Reluctance Generators (SRGs). The majority of existing studies tend to favor voltage or power control strategies. However, a significant drawback of SRGs is their susceptibility to high torque ripple. In power generation systems, torque ripple implicates fluctuations in the generated power of the generator. Moreover, high torque ripple can lead to mechanical vibrations and noise in the powertrain, impacting the overall system performance. In this paper, a Torque Sharing Function (TSF) with Indirect Instantaneous Torque Control (IITC) for SRG applied to Wind Energy Conversion Systems (WECS) is proposed to minimize torque ripple. The proposed method adjusts the shared reference torque function between the phases based on instantaneous torque, rather than the existing TSF methods formulated with a mathematical expression. Additionally, this paper introduces an innovative speed control scheme for SRG drive using a Fuzzy Super-Twisting Sliding Mode Command (FSTSMC) method. Notably robust against parameter uncertainties and payload disturbances, the proposed scheme ensures finite-time convergence even in the presence of external disturbances, while effectively reducing chattering. To assess the effectiveness of the proposed methods, comprehensive comparisons are made with traditional control techniques, including Proportional-Integral (PI), Integral Sliding Mode Control (ISMC), and Super-Twisting Sliding Mode Control (STSMC). The simulation results, obtained using MATLAB (R)/SIMULINK (R) under various speeds and mechanical torque conditions, demonstrate the superior performance and robustness of the proposed approaches. This study presents a thorough experimental analysis of a 250 W four-phase 8/6 SRG. The generator was connected to a DC resistive load, and the analysis focuses on assessing its performance and operational characteristics across different rotational speeds. The primary objective is to validate and confirm the efficacy of the SRG under varying conditions.
2024
Autores
de Castro, R; Moura, S; Esteves, RE; Corzine, K;
Publicação
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
Abstract
This special section features extended versions of papers originally published in the 2022 IEEE Vehicle Power and Propulsion Conference (VPPC22), hosted by the University of California, Merced, USA. This was the first time that the VPPC took place in California, USA. It was a timely visit. California recently announced that only zero-emission vehicles (ZEVs) will be allowed to be sold in the state by 2035. Other states and countries will surely follow. The VPPC, as one of the pioneer forums dedicated to electric mobility, is in a privileged position to create and disseminate knowledge that will help our communities transition toward sustainable transportation, improving air quality and reducing greenhouse emissions.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.