Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CPES

2014

Availability of Household loads to Participate in Demand Response

Autores
Iria, JP; Soares, FJ; Madureira, AG; Heleno, M;

Publicação
2014 IEEE 8TH INTERNATIONAL POWER ENGINEERING AND OPTIMIZATION CONFERENCE (PEOCO)

Abstract
This paper proposes a novel method to characterize the availability of household loads to participate in demand response programmes, as well as detailed mathematical models to characterize households loads. The availability of the households results from the flexibility of their controllable loads to increase/reduce consumption. This flexibility is calculated taking into account the comfort levels predefined by the customers and the technical restrictions of the controllable loads. The proposed method was evaluated through a management algorithm developed to perform demand control actions in quasi-real-time, according to the objectives of the distribution system operator or energy aggregator and the availability of the household loads. A scenario with a single household located in a semi-urban area is used to illustrate the application of the algorithm and validate the proposed method.

2014

Advanced Models and Algorithms for Demand Participation in Electricity Markets

Autores
Iria, JP; Soares, FJ; Madureira, AG;

Publicação
2014 NORTH AMERICAN POWER SYMPOSIUM (NAPS)

Abstract
This paper proposes a novel Energy Aggregator model responsible for managing the flexibility of low voltage customers in order to reduce electricity costs. The flexibility of the customers is represented by the availability of their controllable loads to reduce/ increase power consumption. The flexible loads are managed according to the customers' preferences and the technical limitations of the flexible loads. The Energy Aggregator model developed includes an algorithm designed to manage customers' flexibility in quasi-real-time, with the objective of minimizing the deviations from the energy bought by the aggregator in the market. A scenario with 30 households located in a semi-urban area is used to illustrate the application of the algorithm and validate the proposed approach.

2014

Development of a Novel Management System for Electric Vehicle Charging

Autores
Iria, JP; Soares, FJ; Franchin, IG; Silva, N;

Publicação
2014 IEEE INTERNATIONAL ELECTRIC VEHICLE CONFERENCE (IEVC)

Abstract
This paper describes a novel Electric Vehicle (EV) charging management system which was designed to control the EV load considering simultaneously the EV owners requirements and the electrical network technical limitations. The system was developed to be integrated with existing commercial equipment for smart grids, such as distribution transformer controllers, SCADA systems and Electrical Vehicles Charging Stations. The performance of the smart charging system was evaluated using a typical Portuguese low voltage network as test case, where several EV were assumed to exist. The results obtained prove the effectiveness of the system, as it allowed charging all the EV according to their owners' preferences without increasing the network peak load or creating voltages or overload problems.

2014

A linearized approach to the Symmetric Fuzzy Power Flow for the application to real systems

Autores
Heleno, M; Sumaili, J; Meirinhos, J; da Rosa, MA;

Publicação
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS

Abstract
Many applications of Fuzzy Power Flow have been proposed not only for operational purposes considering uncertainties, but also for planning exercises with high level of intermittent sources, interconnection presence and, more recently, electric vehicles load. However, their use in real systems is not usual, mainly where the uncertainty level can be significant. This is due to the low accuracy of the results related to the classical methods, and the computational burden needed to achieve a high level of accuracy in the symmetric approaches. This paper aims to present a linearization of the Symmetric Fuzzy Power Flow in order to reduce the computational effort and make it possible for it to achieve high levels of accuracy when applied to real systems. With the purposes of demonstrating the applicability of the proposed approach, several IEEE test systems and a planning configuration of the Portuguese Transmission System will be studied.

2014

A peer-to-peer service architecture for the Smart Grid

Autores
Campos, F; Matos, M; Pereira, J; Rua, D;

Publicação
14-TH IEEE INTERNATIONAL CONFERENCE ON PEER-TO-PEER COMPUTING (P2P)

Abstract
Important challenges in interoperability, reliability, and scalability need to be addressed before the Smart Grid vision can be fulfilled. The sheer scale of the electric grid and the criticality of the communication among its subsystems for proper management, demands a scalable and reliable communication framework able to work in an heterogeneous and dynamic environment. Moreover, the need to provide full interoperability between diverse current and future energy and non-energy systems, along with seamless discovery and configuration of a large variety of networked devices, ranging from the resource constrained sensing devices to servers in data centers, requires an implementation-agnostic Service Oriented Architecture. In this position paper we propose that this challenge can be addressed with a generic framework that reconciles the reliability and scalability of Peer-to-Peer systems, with the industrial standard interoperability of Web Services. We illustrate the flexibility of the proposed framework by showing how it can be used in two specific scenarios.

2014

The "Smart Paradox": Stimulate the deployment of smart grids with effective regulatory instruments

Autores
Marques, V; Bento, N; Costa, PM;

Publicação
ENERGY

Abstract
The concept of SG (Smart Grids) encompasses a set of technologies that raise the intelligence of the electrical networks, such as smart meters or instruments of communication, sensing and auto-correction of networks. Nevertheless, the cost is still an important obstacle for the transformation of the current electricity system into a smarter one. Regulation can have an important role in setting up a favorable framework that fosters investments. However, the novelty with SG is the disembodied character of the technology, which may change the incentives of the regulated network companies to invest, affecting the effectiveness of the regulatory instruments ("cost plus" or "price cap"). This paper demonstrates that the solution to this "Smart" paradox requires strong incentive regulation mechanisms able to stimulate the adoption of SG technologies. Moreover, the regulation should not jeopardize conventional investments that are unable to be substituted by SG. Thus, a combination of performance regulation and efficiency obligations may be necessary.

  • 184
  • 317