2017
Autores
Rocha, C; Mendonca, T; Silva, ME; Gambus, P;
Publicação
JOURNAL OF CLINICAL MONITORING AND COMPUTING
Abstract
2017
Autores
Soares, T; Jensen, TV; Mazzi, N; Pinson, P; Morais, H;
Publicação
WIND ENERGY
Abstract
Proliferation of wind power generation is increasingly making this power source an important asset in designs of energy and reserve markets. Intuitively, wind power producers will require the development of new offering strategies that maximize the expected profit in both energy and reserve markets while fulfilling the market rules and its operational limits. In this paper, we implement and exploit the controllability of the proportional control strategy. This strategy allows the splitting of potentially available wind power generation in energy and reserve markets. In addition, we take advantage of better forecast information from the different day-ahead and balancing stages, allowing different shares of energy and reserve in both stages. Under these assumptions, different mathematical methods able to deal with the uncertain nature of wind power generation, namely, stochastic programming, with McCormick relaxation and piecewise linear decision rules are adapted and tested aiming to maximize the expected revenue for participating in both energy and reserve markets, while accounting for estimated balancing costs for failing to provide energy and reserve. A set of numerical examples, as well as a case study based on real data, allow the analysis and evaluation of the performance and behavior of such techniques. An important conclusion is that the use of the proposed approaches offers a degree of freedom in terms of minimizing balancing costs for the wind power producer strategically to participate in both energy and reserve markets. Copyright (c) 2017 John Wiley & Sons, Ltd.
2017
Autores
Soares, T; Silva, M; Sousa, T; Morais, H; Vale, Z;
Publicação
ENERGIES
Abstract
The increasing penetration of distributed energy resources based on renewable energy sources in distribution systems leads to a more complex management of power systems. Consequently, ancillary services become even more important to maintain the system security and reliability. This paper proposes and evaluates a generic model for day-ahead, intraday (hour-ahead) and real-time scheduling, considering the joint optimization of energy and reserve in the scope of the virtual power player concept. The model aims to minimize the operation costs in the point of view of one aggregator agent taking into account the balance of the distribution system. For each scheduling stage, previous scheduling results and updated forecasts are considered. An illustrative test case of a distribution network with 33 buses, considering a large penetration of distribution energy resources allows demonstrating the benefits of the proposed model.
2017
Autores
Neyestani, N; Damavandi, MY; Shafie Khah, M; Bakirtzis, AG; Catalao, JPS;
Publicação
IEEE TRANSACTIONS ON POWER SYSTEMS
Abstract
This paper proposes a comprehensive model for the interactions of the plug-in electric vehicles (PEVs) involved parties. An aggregator with mixed resources is assumed to be the interface between the parking lot (PL) and the upstream energy and reserve markets. On the other hand, the interactions of the PEV owners and the PL are also modeled as they impose restrictions to the PL's behavior. Therefore, a bilevel problem is constructed where in the upper level the objective of the aggregator is to maximize its profit through its interactions, and in the lower level the PL maximizes its own profit limited to the preferences of PEVs. The objectives of the upper and lower levels are contradictory; hence, an equilibrium point should be found to solve the problem. In this regard, the duality theorem is employed to convert the bilevel model to a mathematical program with equilibrium constraints. The model is implemented on the IEEE 37-bus network with added distributed generations. Various cases are thoroughly investigated and conclusions are duly drawn.
2017
Autores
Damavandi, MY; Neyestani, N; Shafie khan, M; Chicco, G; Catalao, JPS;
Publicação
2017 7TH INTERNATIONAL CONFERENCE ON MODERN POWER SYSTEMS (MPS)
Abstract
This paper investigates the effectiveness of using different decision-making frameworks in local energy systems (LES) through the assessment of the long-term equilibrium of energy players. For this purpose, the energy system is modelled through two levels of multi-energy player (MEP) and LES, coupled by energy price signals. The conflict between the decision-making of these two levels of players is modelled through a bi-level approach. A mathematical problem with equilibrium constraint is formulated by applying the duality theory, resorting to a linear representation of the constraints. The solution is found by using the CPLEX12 solver. The numerical results show the characteristics of the MEP behaviour in different energy aggregation modes for the LES, with centralised management or uniform pricing. The MEP may find benefits from possible synergies among the LES due to availability of energy carriers with complementary characteristics.
2017
Autores
Damavandi, MY; Neyestani, N; Bahramara, S; Shafie khah, M; Catalao, JPS;
Publicação
2017 IEEE MANCHESTER POWERTECH
Abstract
Integration of emerging energy resources in distribution level reveals new opportunities for decision makers to coordinate various energy vectors under the concept of multi-energy system (MES). In this paper, the behavior of a multi-energy player (MEP) who can trade more than one energy carrier to enhance operational flexibility of MES has been investigated. MEP participates in retail and wholesale energy markets to maximize its profit. The strategic behavior of MEP in these two markets is modeled as two synchronized bi-level problems. The problem is linearized and solved through CPLEX 12 solver. Numerical results show the behavior of MEP as a prosumer in the electricity market to make a smother demand and price profile. Moreover, the results reveal a mutual effect of local and wholesale equilibrium prices by increasing the market share of MEP.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.