2015
Autores
Carvalho, LM; Loureiro, F; Sumaili, J; Keko, H; Miranda, V; Marcelino, CG; Wanner, EF;
Publicação
2015 18TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEM APPLICATION TO POWER SYSTEMS (ISAP)
Abstract
The optimal solution provided by metaheuristics can be viewed as a random variable, whose behavior depends on the value of the algorithm's strategic parameters and on the type of penalty function used to enforce the problem's soft constraints. This paper reports the use of parametric and non-parametric statistics to compare three different penalty functions implemented to solve the Security Constrained Optimal Power Flow (SCOPF) problem using the new enhanced metaheuristic Differential Evolutionary Particle Swarm Optimization (DEEPSO). To obtain the best performance for the three types of penalty functions, the strategic parameters of DEEPSO are optimized by using an iterative algorithm based on the two-way analysis of variance (ANOVA). The results show that the modeling of soft constraints significantly influences the best achievable performance of the optimization algorithm.
2015
Autores
Bessa, RJ; Trindade, A; Silva, CSP; Miranda, V;
Publicação
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS
Abstract
The deployment of Smart Grid technologies opens new opportunities to develop new forecasting and optimization techniques. The growth of solar power penetration in distribution grids imposes the use of solar power forecasts as inputs in advanced grid management functions. This paper proposes a new forecasting algorithm for 6 h ahead based on the vector autoregression framework, which combines distributed time series information collected by the Smart Grid infrastructure. Probabilistic forecasts are generated for the residential solar photovoltaic (PV) and secondary substation levels. The test case consists of 44 micro-generation units and 10 secondary substations from the Smart Grid pilot in Evora, Portugal. The benchmark model is the well-known autoregressive forecasting method (univariate approach). The average improvement in terms of root mean square error (point forecast evaluation) and continuous ranking probability score (probabilistic forecast evaluation) for the first 3 lead-times was between 8% and 12%, and between 1.4% and 5.9%, respectively. (C) 2015 Published by Elsevier Ltd.
2015
Autores
Bessa, RJ; Trindade, A; Miranda, V;
Publicação
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS
Abstract
The solar power penetration in distribution grids is growing fast during the last years, particularly at the low-voltage (LV) level, which introduces new challenges when operating distribution grids. Across the world, distribution system operators (DSO) are developing the smart grid concept, and one key tool for this new paradigm is solar power forecasting. This paper presents a new spatial-temporal forecasting method based on the vector autoregression framework, which combines observations of solar generation collected by smart meters and distribution transformer controllers. The scope is 6-h-ahead forecasts at the residential solar photovoltaic and medium-voltage (MV)/LV substation levels. This framework has been tested in the smart grid pilot of vora, Portugal, and using data from 44 microgeneration units and 10 MV/LV substations. A benchmark comparison was made with the autoregressive forecasting model (AR-univariate model) leading to an improvement on average between 8% and 10%.
2015
Autores
Krstulovic, J; Miranda, V;
Publicação
2015 18TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEM APPLICATION TO POWER SYSTEMS (ISAP)
Abstract
This paper offers an efficient and robust concept for a decentralized bad data processing, able to supply in real-time a power system state estimator with a repaired measurement set. Corrupted measurement vectors are funneled through a denoising auto-associative neural network in order to project the biased vector back to the data manifold learned during an offline training process. In order to improve accuracy, a maximum similarity with the solution manifold, measured with Correntropy, is searched for by a meta-heuristic. The extreme robustness and scalability of the process is demonstrated in multiple characteristic case studies.
2015
Autores
Keko, H; Miranda, V;
Publicação
2015 18TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEM APPLICATION TO POWER SYSTEMS (ISAP)
Abstract
Optimization problems in electric power systems under high levels of uncertainty have been solved using stochastic programming methods for years. This is especially the case for medium-term problems and systems with a large share of hydro storages. The increased uncertainty in power system operation coming from volatile renewables has made the stochastic techniques interesting in shorter time frames as well. In the stochastic models the uncertainty is typically included by a discretized set of scenarios. This increases the computational burden significantly so a common approach is to preprocess and reduce the number of scenarios. Scenario reduction methods have been shown to function relatively well in expected value stochastic optimization. However, such setting of stochastic optimization is often criticized as being risk-prone so other risk-averse models exist. The evolutionary computation algorithms' flexibility permits the implementation of these risk models with relative simplicity. In this paper, a population-based evolutionary computation algorithm is applied to unit commitment problem under uncertainty and the paper illustrates several approaches to including risk policies in an evolutionary algorithm fitness function and illustrates its flexibility along with the link between scenario reduction similarity metric and risk policy.
2015
Autores
Lima, SL; Saavedra, OR; Miranda, V;
Publicação
IEEE TRANSACTIONS ON POWER DELIVERY
Abstract
Power transformers are important equipment of a substation from the generation, transmission, and distribution of electricity to end users. The costs associated with purchasing a power transformer in the voltage class of 500 kV (100 MVA) are a few million. The fines imposed by regulatory agencies are significant when there is unavailability of equipment for any defect or failure. Therefore, energy companies have been struggling in preventive and predictive maintenance in order to maintain this equipment in an effective maintenance program, avoiding the occurrence of failures. There are various techniques that are utilized for diagnosis and analysis of transformer failure, but little has been discussed about mechanisms that assist in decision making when it is necessary to overload the transformer, especially in emergency situations. In this paper, we present a framework that unifies the step of fault diagnosis of power transformers with the process of decision making, considering the current operating conditions as well as the life of the equipment. The assistance to the decision-making methodology is based on risk analysis with indicators derived from the failure rate and Arrhenius theory. The validation of the method is performed with a case study using data from a utility.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.