2024
Autores
Arafat, ME; Ahmad, MW; Shovan, SM; Ul Haq, T; Islam, N; Mahmud, M; Kaiser, MS;
Publicação
COGNITIVE COMPUTATION
Abstract
Methylation is considered one of the proteins' most important post-translational modifications (PTM). Plasticity and cellular dynamics are among the many traits that are regulated by methylation. Currently, methylation sites are identified using experimental approaches. However, these methods are time-consuming and expensive. With the use of computer modelling, methylation sites can be identified quickly and accurately, providing valuable information for further trial and investigation. In this study, we propose a new machine-learning model called MeSEP to predict methylation sites that incorporates both evolutionary and structural-based information. To build this model, we first extract evolutionary and structural features from the PSSM and SPD2 profiles, respectively. We then employ Extreme Gradient Boosting (XGBoost) as the classification model to predict methylation sites. To address the issue of imbalanced data and bias towards negative samples, we use the SMOTETomek-based hybrid sampling method. The MeSEP was validated on an independent test set (ITS) and 10-fold cross-validation (TCV) using lysine methylation sites. The method achieved: an accuracy of 82.9% in ITS and 84.6% in TCV; precision of 0.92 in ITS and 0.94 in TCV; area under the curve values of 0.90 in ITS and 0.92 in TCV; F1 score of 0.81 in ITS and 0.83 in TCV; and MCC of 0.67 in ITS and 0.70 in TCV. MeSEP significantly outperformed previous studies found in the literature. MeSEP as a standalone toolkit and all its source codes are publicly available at https://github.com/arafatro/MeSEP.
2024
Autores
Hasler, CFS; Lourenço, EM; Tortelli, OL; Portelinha, RK;
Publicação
ELECTRIC POWER SYSTEMS RESEARCH
Abstract
This paper proposes to extend the fast-decoupled state estimation formulation to bring its well-known efficiency and benefits to the processing of networks with embedded FACTS devices. The proposed method approaches shunt-, series-, and shunt -series -type devices. The controller parameters are included as new active or reactive state variables, while controlled quantity values are included in the metering scheme of the decoupled approach. From the electrical model adopted for each device, the extended formulation is presented, and a modified fast-decoupled method is devised, seeking to ensure accuracy and impart robustness to the iterative solution. Simulation results conducted throughout the IEEE 30 -bus test system with distinct types of FACTS devices are used to validate and evaluate the performance of the proposed decoupled approaches.
2024
Autores
Viera, LAB; Pascoal, P; Rech, C;
Publicação
Eletrônica de Potência
Abstract
2024
Autores
de Souza, M; Reiz, C; Leite, JB;
Publicação
2024 IEEE 22ND MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, MELECON 2024
Abstract
In this work, the implementation of an efficient multi-threading algorithm for calculating the power flow in electricity distribution networks is carried out using recursion and parallel programming. With the integration of renewable energy, energy storage systems and distributed generation, the ability of power flow simulations becomes a crucial factor in finding the best solution in the shortest possible time. We propose the direct use of graph theory to represent distribution network topologies. In this data structure, the traversal algorithms are inherently recursive, thus enabling the development of algorithms with parallel programming to obtain the power flow calculation faster and more efficiently. Results under a 809 buses test system show that the implementation provides additional computation efficiency of 32% with recursion techniques and 27% with parallel programming, due the expense of threads' allocation the combined gain reaches 50%.
2024
Autores
de Lima, TD; Reiz, C; Soares, J; Lezama, F; Franco, JF; Vale, Z;
Publicação
ENERGY INFORMATICS, EI.A 2023, PT II
Abstract
The intensification of environmental impacts and the increased economic risks are triggering a technological race towards a low-carbon economy. In this socioeconomic scenario of increasing changes and environmental concerns, microgrids (MGs) play an important role in integrating distributed energy resources. Thus, a planning strategy for grid-connected MGs with distributed energy resources and electric vehicle (EV) charging stations is proposed in this paper. The developedmathematical model aims to defineMGexpansion decisions that satisfy the growing electricity demand (including EV charging demand) at the lowest possible cost; such decisions include investments in PV units, wind turbines, energy storage systems, and EV charging stations. The objective function is based on the interests of the MG owner, considering constraints associated with the main distribution grid. A mixed-integer linear programming model is used to formulate the problem, ensuring the solution's optimality. The applicability of the proposed model is evaluated in the 69-bus distribution grid. Promising results concerning grid-connected MGs were obtained, including the enhancement of energy exchange with the grid according to their needs.
2024
Autores
Reiz, C; Filgueiras, JLD; Evaristo, JW; Zanin, RB; Martins, EFdO;
Publicação
Caderno Pedagógico
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.