Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CPES

2009

Evaluating operational risk in a power system with a large amount of wind power

Autores
Gouveia, EM; Matos, MA;

Publicação
ELECTRIC POWER SYSTEMS RESEARCH

Abstract
Reserve definition is a compromise between economic issues (additional capacity costs) and reliability (risk of loss of load due to outages of the generators), generally approached by deterministic criteria (e.g. the percentage rule defined by UCTE in Europe) and probabilistic methods like PJM (Pennsylvania-New Jersey, Maryland) and its enhancements, based on the concept of risk. With wind power generation increasing in power systems worldwide, these operational issues gain a renewed interest due to the volatile nature of this kind of energy. The aim of this paper is therefore to address this issue from a risk evaluation point of view, showing that it is possible to extend classical probabilistic methods to this new situation, by introducing a detailed Markov model of wind parks that accounts both for machine failures and different wind power levels. This evaluation, where wind generation fluctuation and uncertainty is included, can be helpful for transmission system operators (TSO). when defining the reserve requirements for the next hours. In fact, the results obtained for the risk can be used by TSO to check if the reserve levels that results from traditional deterministic rules are acceptable or need to be increased.

2009

Probabilistic evaluation of reserve requirements of generating systems with renewable power sources: The Portuguese and Spanish cases

Autores
Matos, M; Lopes, JP; Rosa, M; Ferreira, R; da Silva, AL; Sales, W; Resende, L; Manso, L; Cabral, P; Ferreira, M; Martins, N; Artaiz, C; Soto, F; Lopez, R;

Publicação
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS

Abstract
This paper presents an application of probabilistic methodologies to evaluate the reserve requirements of generating systems with a large penetration of renewable energy sources. The idea is to investigate the behavior of reliability indices, including those from the well-being analysis, when the major portion of the renewable sources comes from wind power and other intermittent sources. A new simulation process to address operating reserve adequacy is introduced, and the correspondent reliability indices are observed. Case Studies on the Portuguese and Spanish generating systems are presented and discussed.

2009

Multi-Microgrid Impact Assessment Using Multi Criteria Decision Aid Methods

Autores
Vasiljevska, J; Pecas Lopes, JAP; Matos, MA;

Publicação
2009 IEEE BUCHAREST POWERTECH, VOLS 1-5

Abstract
Recognizing the benefit that one can get by exploiting the Micro-Grid (MG) concept, as an active part of the Low Voltage (LV) network comprising several micro-generation (mu G) sources, controllable loads and storage devices, is a key issue towards the MG concept deployment. Furthermore, the MG concept is extended into Multi-Micro Grid (MMG) concept, identifying the benefits that can be obtained at Medium Voltage (MV) level. The main idea behind this research is to show what one gains and what one looses by setting up the MG concept. Therefore, the benefits reported, are evaluated through a cost-benefit approach by modeling the problem as a multi-attribute problem using several Decision-Aid (DA) techniques to capture different Decision Maker (DM) preference structures.

2009

Avoided losses on LV networks as a result of microgeneration

Autores
Costa, PM; Matos, MA;

Publicação
ELECTRIC POWER SYSTEMS RESEARCH

Abstract
In the scope of the discussions about microgeneration (and microgrids), the avoided electrical losses are often pointed out as an important value to be credited to those entities. Therefore, methods to assess the impact of microgeneration on losses must be developed in order to support the definition of a suitable regulatory framework for the economic integration of microgeneration on distribution networks. This paper presents an analytical method to quantify the value of avoided losses that microgeneration may produce on LV networks. Intervals of expected avoided losses are used to account for the variation of avoided losses due to the number, size and location of microgenerators, as well as for the kind of load distribution on LV networks.

2009

Assessing the contribution of microgrids to the reliability of distribution networks

Autores
Costa, PM; Matos, MA;

Publicação
ELECTRIC POWER SYSTEMS RESEARCH

Abstract
The emergence of microgeneration has recently lead to the concept of microgrid, a network of LV consumers and producers able to export electric energy in some circumstances and also to work in an isolated way in emergency situations. Research on the organization of microgrids, control devices, functionalities and other technical aspects is presently being carried out, in order to establish a consistent technical framework to support the concept. The successful development of the microgrid concept implies the definition of a suitable regulation for its integration on distribution systems. In order to define such a regulation, the identification of costs and benefits that microgrids may bring is a crucial task. Actually, this is the basis fora discussion about the way global costs could be divided among the different agents that benefit from the development of microgrids. Among other aspects, the effect of microgrids on the reliability of the distribution network has been pointed out as an important advantage, due to the ability of isolated operation in emergency situations. This paper identifies the situations where the existence of a microgrid may reduce the interruption rate and duration and thus improve the reliability indices of the distribution network. The relevant expressions necessary to quantify the reliability are presented. An illustrative example is included, where the global influence of the microgrid in the reliability is commented.

2009

Design of grounding systems in substations using a mixed-integer linear programming formulation

Autores
Khodr, HM; Salloum, GA; Saraiva, JT; Matos, MA;

Publicação
ELECTRIC POWER SYSTEMS RESEARCH

Abstract
The main purpose of this paper is the development of an optimization model to design grounding grids in electrical substations. The design of a grounding grid in a substation is formulated as a mixed-integer linear programming problem. The developed optimization model incorporates the constructive Characteristics, as well as the technical and security requirements inherent to the construction, installation and operation of these grids. The model includes variables defining the grid characteristics according to the configurations admitted by the designer, which are selected amongst a set of pie-selected grounding designs. The definition of these configurations includes the geometry of the grid, the depth at Which the conductors will be installed and the radius of the conductor. A finite number of configurations can be generated before running the optimization process by considering all the variables in accordance with the IEEE Std 80-2000. The optimization problem also includes safety constraints related with the maximum allowed touching and step voltages, which are defined according to the fibrillation discharge limits. These fibrillation discharge limits are defined by IEEE Std 80-2000 for low frequencies for high frequencies. the limits are not the same as in 50 Hz). The model also includes the equivalent impedance of the transmission line supplying the substation where it will be located the grounding grid to be designed. As a result, the problem outputs define the most adequate grounding grid among the possible pre-selected configurations. This selection is driven by the total investment and installation costs, corresponding to the objective of the optimization model. To illustrate the interest of this research, the paper includes a case study based oil a real Situation, as all example of a potential application of this approach for engineering grounding design. Finally, it should also be referred that the scope of application of this methodology is potentially very wide given that it is in accordance with the specifications defined by the IEEE Std 80-2000.

  • 247
  • 318